OpenGL 基础概念

1、图像API

  • OpenGL (OpenGraphics Library)是一个跨编程语言,跨平台的编程图形程序接口,它将计算机的资源抽象称为一个个OpenGL的对象,对这些资源的操作抽象为一个个的OpenGL指令。
  • Openg ES(OpenGL for Embedded Systems)是OpenGL三维图形API的子集,针对手机、PDA和游戏主机等嵌入式设备而设计,去除了许多不必要和性能较低的API结构
  • DirectX 是由很多API组成的,DirectX 并不是一个单纯的图像API。最重要的是DirectX是属于Windows上一个多媒体处理框架。并不支持Windows以外的平台,所以不是跨平台框架,按照性质分类,可以分为四大部分,显示部分,声音部分,输入部分和网络部分。
  • Metal:Apple 为游戏开发者推出了新的平台技术 Metal,改技术能够为 3D 图像提高 10 倍的渲染性能。Metal 是 Apple 为了解决 3D 渲染而推出的框架

2、OpenGL 上下文(Context)

  • 在应用程序调用任何OpenGL的指令之前,需要安排首先创建一个OpenGL 的上下文。这个上下文是一个非常庞大的状态机,保存了OpenGL 中的各种状态,这也是OpenlGL指令执行的基础
  • OpenGL 的函数不管在哪个语言中,都是类似C语言一样的面向过程的函数,本质上都是对OpenGL 上下文这个庞大的状态机中的某个状态或者对象进行操作,当然你得首先把这个对象设置为当前对象。因此,通过对OpenGL指令的封装,是可以将OpenGL的相关调用封装成为一个面向对象的图像API的
  • 由于OpenGL 上下文是一个巨大的状态机,切换上下文往往会产生较大的开销,但是不同的绘制模块,可能需要使用完全独立的状态管理。因此,可以在应用程序中分别创建多个不同的上下文,在不同线程中使用不同的上下文,上下文之间共享纹理、缓冲区等资源。这样的方案,会比反复切换上下文,或者大量修改渲染状态,更加合理高效的。
    核心要点
  • Open GL 指令执行的基础,是一个非常庞大的状态机。
  • Open GL 类型C语言一样面向过程,但是可以通过Open GL指令的封装,是可以将相关调用封装成为一个面向对象的图像API。
  • OpenGL 切换上下文会产生较大的开销。根据业务需求可创建多个上下文,但是上下文之间会共享纹理、缓冲区等资源。

3、OpenGL状态机

  • 状态机是理论上的一种机器,状态机描述了一个对象在其生命周期内所经历的各种状态,状态间的转变,发生转变的动因,条件及转变中所执行的活动,或者说,状态机是一种行为,说明对象在其生命周期中响应事件所经历的状态序列以及对那些状态事件的响应。因此具有以下特点
    • 有记忆功能更,能记住其当前的状态
    • 可以接收输入,根据输入的内容和自己的原先状态,修改自己当前状态,并且可以有对应输出
    • 当进入特殊状态(停机状态)的时候,变不再接收输入,停止工作。

4、渲染

将图形/图像数据转换成 2D 空间图像操作叫做渲染(Rendering)

5、顶点数组(VertexArray)和顶点缓冲区(VertexBuffer)

  • 顶点数据就是图像的轮廓。OpenGL中的图像都是由图元组成,有3种类型的图元:点、线、三角形。
  • 开发者可以选择设定函数指针,在调用绘制方法的时候,直接由内存传入顶点数据,也就是说这部分数据之前是存储在内存当中的,被称为顶点数组。
  • 性能更高的做法就是,提前分配一块显存,将顶点数据预先传入到显存中。这部分的显存,就被称为顶点缓冲区。
  • 顶点指的是我们在绘制一个图形时,它的顶点位置数据。而这个数据可以直接存储在数组中或者将其缓存到GPU内存中
    核心要点
  • 3种类型的图元:点、线、三角形
  • 顶点数组存储在内存中的
  • 顶点缓存去存储在缓存中

6、着色器程序(Shader)

  • 就全面的将固定渲染管线架构变为了可编程渲染管线。
  • OpenGL在实际调用绘制函数之前,还需要指定一个由Shader编译成的着色器程序。常见的着色器主要有顶点着色器(VertexShader)、片段着色器(FragmentShader)/像素着色器(PixelShader)、几何着色器(GeometryShader)、曲面细分着色器(TessellationShader)。⽚段着色器和像素着色器只是在OpenGL和DX中的不同叫法而已,直到 OpenGLES 3.0,依然只支持了顶点着色器和片段着色器这两个最基础的着色器。
  • OpenGL在处理Shader时,和其他编译器一样。通过编译、链接等步骤,生成了着色器程序(glProgram),着色器程序同时包含了顶点着色器对传入的顶点数据进行运算。在通过图元装配,将顶点转换为图元。然后进行光栅化,将图元这种矢量图形,转换为栅格化数据。最后,将栅格化数据传入片段着色器中进行运算。片段着色器会对栅格化数据中的每一个像素进行运算,并决定像素的颜色。
    核心要点
  • 将固定渲染管架构变为了可编程渲染管线
  • 常见的着色器主要有顶点着色器,片段着色器/像素着色器,几何着色器,曲面细分着色器
  • OpenGL ES只⽀持顶点着⾊器和片段着⾊器。
  • OpenGL通过编译、链接等步骤,将⽣成着⾊器程序
  • 在OpenGL进行绘制的时候,由顶点着⾊器对传⼊的顶点数据进⾏运算。再通过图元装配,将顶点转换为图元。之后进⾏光栅化,将图元这种⽮量图形,转换为栅格化数据。最后,将栅格化数据传入⽚段着⾊器中进⾏运算。⽚段着⾊器会对栅格化数据中的每一个像素进行运算,并决定像素的颜⾊。

6.1、顶点着色器(VertexShader)

  • 顶点着色器是 OpenGL 中用于计算顶点属性的程序
  • 一般来说典型的需要计算的顶点属性主要包括顶点坐标变换、逐顶点光照运算等等。顶点坐标有自身坐标系转换到归一化坐标系的运算,就是在这里发生的。
  • 顶点着色器是逐顶点运算的程序,也就是说每个顶点数据都会执行一次顶点着色器。当前这是并行的,并且顶点的着色器运算过程中无法访问其他顶点的数据。
    核心要点
  • 一般用来处理图形每个顶点变换(旋转、平移、投影等)。
  • 并行计算,且运算过程中无法访问其他顶点的数据。

6.2、片段着色器(FragmentShader)

  • 片段着色器是OpenGL 中用于计算片段(像素)颜色的程序。一般用来处理图形中每个像素点颜色计算和填充。
  • 片段着色器是逐像素运算的程序,也就是说每个像素都会执行一次片段着色器,当前也是并行的
    核心要点
  • 一般用来处理图形中每个像素点颜色计算和填充
  • 并行计算,且运算过程中无法访问其他顶点数据

7、管线

在OpenGL 下渲染图形,就会有经历一个一个节点,而这样的操作可以理解管线,管线是一个抽象概念,之所以称之为管线是因为显卡在处理数据的时候是按照一个固定的顺序来的,而且严格按照这个顺序。
核心要点
显卡在处理数据的时候严格按照固定顺序

8、固定管线/存储着色器

  • 在早期的OpenGL的版本,它封装了很多种着色器程序块内置的一段包含了光照、坐标变换、裁剪等等诸多功能的固定shader程序来完成,来帮组开发者来完成图片渲染,而开发者只需要传入相应的参数,就能快速完成图形的渲染,类似于iOS开发会封装很多API,而我们只需要调用,就可以实现功能,不需要关注底层实现原理。
  • 但是由于OpenGL的使用场景非常丰富,固定管线或存储着色器无法完成每一个业务,这时刻将相关部分开发成可编程
    核心要点
  • 早期的OpenGL版本封装的辅助快速开发的着色器程序块。
  • 由于提供的功能有限,后期变成了可编程的形式。

9、GLSL(OpenGL Shading Language)

  • OPenGL 着色语言(OpenGL Shading Language)是用来在OpenGL中着色编程的语言,也即开发人员写的短小的自定义程序,他们是在图像卡的GPU(Graphic Processor Unit图形处理单元)上执行的, 代替了固定的渲染管线的一部分,使渲染管线中不同层次具有可编程性。比如:视图转换、投影转换等。GLSL(GL Shading Language)的着色器代码分为 2 个部分:Vertex Shader(顶点着⾊器)和Fragment(片元着⾊器)

10、光栅化(Rasterization)

  • 是把顶点数据转换为片元的过程,具有将图转化为一个个栅格组成的图像的作用,特点是每个元素对应帧缓冲区中的一像素。
  • 光栅化就是把顶点数据转换为片元的过程。片元中的每一个元素对应于帧缓存区中的一个像素。
  • 光栅化其实是一种几何图元变为二维图像的过程。该过程包含了两部分的工作。第一部分工作:决定窗口坐标中的哪些整型栅格区域被基本图元占用;第二部分工作:分配一个颜色值和一个深度值到各个区域,光删化过程产生的是片元
  • 把物体的数学描述以及与物体相关的颜色信息转换为屏幕上用于对应位置的像素及用于填充像素的颜色,这个过程称为光栅化,这是一个将模拟信号转化为离散信号的过程。
    核心要点
  • 光栅化就是把顶点数据转换为片元的过程
  • 片元中每个元素对应于帧缓存区中的一个像素
  • 把顶点数据转换为片元的过程包含了两部分:1)决定窗口坐标中的哪些整型栅格区域被基本图元占用;2)分配一个颜色值和一个深度值到各个区域。

10、纹理

  • 纹理可以理解为图片。大家在渲染图形时需要在其编码填充图片,为了使得场景更加逼真,而这里使用的图片,就是常常说的纹理。但是在OpenGL,我们更加习惯叫纹理,而不是图片。

11、混合

在测试阶段之后,如果像素依然没有被剔除,那么像素的颜色将会和帧缓冲区中颜色附着上的颜色进行混合,混合的算法可以通过OpenGL的函数进行指定。但是OpenGL提供的混合算法是有限的,如果需要更加复杂的混合算法,一般可以通过像素着色器进行实现,当然性能会比原生的混合算法差一些

12、矩阵

12.1、变换矩阵(Transformation)

  • 例如图像想发生平移、缩放、旋转变换,就需要使用变换矩阵

12.2、投影矩阵(Projection)

  • 用于将3D坐标转换为二维屏幕,实际线条也将在二维坐标下进行绘制

渲染上屏/交换缓冲区(SwapBuffer)

  • 渲染缓冲区一般映射的是系统的资源比如窗口,如果将图像直接渲染到窗口对应的渲染缓冲区,则可以将图像显示到屏幕上。
  • 但是,如果每个窗口只有一个缓冲区,那么在绘制过程中屏幕进行了刷新,窗口可能显示不出完整的图像
  • 为了解决这个问题,常规的OpenGL程序至少都会有两个缓冲区。显示在屏幕上的称为屏幕缓冲区,没有显示的称为离屏缓冲区。在一个缓冲区渲染完成之后,通过将屏幕缓冲区和离屏缓冲区交换,实现图像在屏幕上的显示。
  • 由于显示器的刷新一般都是逐行进行的,因此为了防止交互缓冲区的时候屏幕上下区域的图像分属于两个不同的帧,因此交换一般会等待显示器刷新完成的信号,在显示器两次刷新的间隔中进行交换,这个信号就被称为垂直同步信号,这个技术被称为垂直同步。
  • 使用了双缓冲区和垂直同步技术之后,由于总是要等待缓冲区交换之后再进行下一帧的渲染,使得帧率无法完全达到硬解允许的最高水平。为了解决这个问题,引入了三缓冲区技术,在等待垂直同步时,来回交替渲染两个离屏的缓冲区,而垂直同步方式时,屏幕缓冲区和最近渲染完成的离屏缓冲区交换,实现充分利用硬解性能的目的。
    核心要点
  • 如果每个窗口只有一个缓冲区,若在绘制过程中刷新屏幕,窗口可能显示不出完整的图像。
  • 屏幕缓冲区/离屏缓冲区:为了解决以上问题,常规的OpenGL程序至少会有两个缓冲区,显示在屏幕上的称为屏幕缓冲区,没有显示的称为离屏缓冲区。
  • 垂直同步:由于显示器的刷新一般都是逐行进行的,因此为了防止交互缓冲区的时候屏幕上下区域的图像分属于两个不同的帧,因此交换一般会等待显示器刷新完成的信号,在显示器两次刷新的间隔中进行交换,这个信号就被称为垂直同步信号,这个技术被称为垂直同步。
  • 三缓冲区技术:使用了双缓冲区和垂直同步技术之后,由于总是要等待缓冲区交换之后再进⾏下⼀帧的渲染,使得帧率无法完全达到硬件允许的最⾼⽔平。为了解决这个问题,引⼊了三缓冲区技术。在等待垂直同步时,来回交替渲染两个离屏的缓冲区,⽽垂直同步发⽣生时,屏幕缓冲区和最近渲染完成的离屏缓冲区交换,实现充分利利⽤硬件性能的⽬的。

你可能感兴趣的:(OpenGL)