[视觉工程]以图搜图之提升准确率(模型微调)

import numpy as np
import pickle
from tqdm import tqdm, tqdm_notebook
import random
import time
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
import PIL
from PIL import Image
from sklearn.neighbors import NearestNeighbors
import random
from textwrap import wrap

import glob
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
%matplotlib notebook

# Helper function to get the classname
def classname(str):
    return str.split('/')[-2]
    
def display(dic, per_class, neighbors, message):
    for key in dic:
        print(key, "\tAccuracy: ", per_class[key])
    for each_class in dic:
        indices_of_class = [
            i for i, j in enumerate(filenames) if classname(j) == each_class
        ]
        random_image_index = random.choice(indices_of_class)
        distances, indices = neighbors.kneighbors(
            [feature_list[random_image_index]])
        similar_image_paths = [filenames[random_image_index]] + \
            [filenames[indices[0][i]] for i in range(1, 4)]
        plot_images(similar_image_paths, distances[0], message)
        
def get_least_accurate_classes(feature_list):
    per_class_acc = {}
    num_nearest_neighbors = 5
    num_correct_predictions = 0
    num_incorrect_predictions = 0
    neighbors = NearestNeighbors(n_neighbors=num_nearest_neighbors,
                                 algorithm='brute',
                                 metric='euclidean').fit(feature_list)
    for i in tqdm_notebook(range(len(feature_list))):
        distances, indices = neighbors.kneighbors([feature_list[i]])
        for j in range(1, num_nearest_neighbors):
            predicted_class = classname(filenames[indices[0][j]])
            ground_truth = classname(filenames[i])
            if (predicted_class not in per_class_acc):
                per_class_acc[predicted_class] = [0, 0, 0]
            if ground_truth == predicted_class:
                num_correct_predictions += 1
                per_class_acc[predicted_class][0] += 1
                per_class_acc[predicted_class][2] += 1
            else:
                num_incorrect_predictions += 1
                per_class_acc[predicted_class][1] += 1
                per_class_acc[predicted_class][2] += 1
    print(
        "Accuracy is ",
        round(
            100.0 * num_correct_predictions /
            (1.0 * num_correct_predictions + num_incorrect_predictions), 2))
    for key, value in per_class_acc.items():
        per_class_acc[key] = round(100.0 * value[0] / (1.0 * value[2]), 2)
    dic = sorted(per_class_acc, key=per_class_acc.get)

    # least_accurate classes
    print("\n\nTop 10 incorrect classifications\n")
    for key in dic[:10]:
        print(key, "\tAccuracy: ", per_class_acc[key])
    return dic[:6], per_class_acc
    
# Load dataset features
filenames = pickle.load(open('data/filenames-caltech256.pickle', 'rb'))
feature_list = pickle.load(open('data/features-caltech256-resnet.pickle', 'rb'))
class_ids = pickle.load(open('data/class_ids-caltech256.pickle', 'rb'))

# Perform PCA over the features
# set the number of features intended
num_feature_dimensions = 100
pca = PCA(n_components=num_feature_dimensions)
pca.fit(feature_list)
feature_list = pca.transform(feature_list)

names_of_least_accurate_classes_before_finetuning, accuracy_per_class_before_finetuning = get_least_accurate_classes(
    feature_list[:])
    
least_accurate_feature_list = []
least_accurate_filenames = []
least_accurate_count = {}
for index, filename in enumerate(filenames):
    if classname(filename) not in least_accurate_count:
        least_accurate_count[classname(filename)] = 0
    if classname(
            filename
    ) in names_of_least_accurate_classes_before_finetuning and least_accurate_count[
            classname(filename)] <= 50:
        least_accurate_feature_list.append(feature_list[index])
        least_accurate_count[classname(filename)] += 1
        least_accurate_filenames.append(class_ids[index])
        
from sklearn.manifold import TSNE
selected_features = least_accurate_feature_list
selected_class_ids = least_accurate_filenames
selected_filenames = least_accurate_filenames
time_start = time.time()
tsne_results = TSNE(n_components=2, verbose=1,
                    metric='euclidean').fit_transform(selected_features)
# tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=250, metric=’euclidean’)
print('t-SNE done! Time elapsed: {} seconds'.format(time.time() - time_start))

plt.title("\n".join(
    wrap(
        "t-SNE visualization of feature vectors of least accurate classes before finetuning",
        60)))
set_classes = list(set(selected_class_ids))
# set different markers for all the classes we are going to show
markers = ["^", ".", "s", "o", "x", "P"]
# set different colors for all the classes we are going to show
colors = ['red', 'blue', 'fuchsia', 'green', 'purple', 'orange']
class_to_marker = {}
class_to_color = {}
for index in range(len(tsne_results)):
    # assign color and marker to each type of class
    if selected_class_ids[index] not in class_to_marker:
        class_to_marker[selected_class_ids[index]] = markers.pop()
    if selected_class_ids[index] not in class_to_color:
        class_to_color[selected_class_ids[index]] = colors.pop()
    plt.scatter(tsne_results[index, 0],
                tsne_results[index, 1],
                c=class_to_color[selected_class_ids[index]],
                marker=class_to_marker[selected_class_ids[index]],
                edgecolor='white',
                linewidth='.6',
                s=90)
plt.show()

filenames = pickle.load(open('data/filenames-caltech256.pickle', 'rb'))
feature_list = pickle.load(
    open('data/features-caltech256-resnet-finetuned.pickle', 'rb'))
class_ids = pickle.load(open('data/class_ids-caltech256.pickle', 'rb'))

# Perform PCA over the features
# set the number of features intended
num_feature_dimensions = 100
pca = PCA(n_components=num_feature_dimensions)
pca.fit(feature_list)
feature_list = pca.transform(feature_list)

least_accurate_feature_list = []
least_accurate_filenames = []
least_accurate_count = {}
for index, filename in enumerate(filenames):
    if classname(filename) not in least_accurate_count:
        least_accurate_count[classname(filename)] = 0
    if classname(
            filename
    ) in names_of_least_accurate_classes_before_finetuning and least_accurate_count[
            classname(filename)] <= 50:
        least_accurate_feature_list.append(feature_list[index])
        least_accurate_count[classname(filename)] += 1
        least_accurate_filenames.append(class_ids[index])
        
from sklearn.manifold import TSNE
selected_features = least_accurate_feature_list
selected_class_ids = least_accurate_filenames
selected_filenames = least_accurate_filenames
time_start = time.time()
tsne_results = TSNE(n_components=2, verbose=1,
                    metric='euclidean').fit_transform(selected_features)
# tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=250, metric=’euclidean’)
print('t-SNE done! Time elapsed: {} seconds'.format(time.time() - time_start))

plt.title("\n".join(
    wrap(
        "t-SNE visualization of feature vectors of least accurate classes after finetuning",
        60)))
plt.tight_layout()
set_classes = list(set(selected_class_ids))
markers = ["^", ".", "s", "o", "x", "P"]
colors = ['red', 'blue', 'fuchsia', 'green', 'purple', 'orange']
class_to_marker = {}
class_to_color = {}
for index in range(len(tsne_results)):
    # get only those tsne_results which belong to each_class
    if selected_class_ids[index] not in class_to_marker:
        class_to_marker[selected_class_ids[index]] = markers.pop()
    if selected_class_ids[index] not in class_to_color:
        class_to_color[selected_class_ids[index]] = colors.pop()
    scatterPlot = plt.scatter(
        tsne_results[index, 0],
        tsne_results[index, 1],
        c=class_to_color[selected_class_ids[index]],
        marker=class_to_marker[selected_class_ids[index]],
        edgecolor='white',
        linewidth='.6',
        s=80)
plt.show()

 

你可能感兴趣的:([视觉工程]以图搜图之提升准确率(模型微调))