Linux 硬件加速 开源人脸识别引擎SeetaFace:第二步在ZedBoard上运行

两张图片的相似度主函数

在Linux下运行相似度函数,先输入test_face_verification.cpp的code再进行编译输出结果

#include
using namespace std;

#ifdef _WIN32
#pragma once
#include 

#define CV_VERSION_ID CVAUX_STR(CV_MAJOR_VERSION) CVAUX_STR(CV_MINOR_VERSION) \
  CVAUX_STR(CV_SUBMINOR_VERSION)

#ifdef _DEBUG
#define cvLIB(name) "opencv_" name CV_VERSION_ID "d"
#else
#define cvLIB(name) "opencv_" name CV_VERSION_ID
#endif //_DEBUG

#pragma comment( lib, cvLIB("core") )
#pragma comment( lib, cvLIB("imgproc") )
#pragma comment( lib, cvLIB("highgui") )

#endif //_WIN32

#if defined(__unix__) || defined(__APPLE__)

#ifndef fopen_s
#define fopen_s(pFile,filename,mode) ((*(pFile))=fopen((filename),(mode)))==NULL
#endif //fopen_s
#endif //__unix
#include 
#include 
#include "face_identification.h"
#include "recognizer.h"
#include "../build/face_detection.h"
#include "../build/face_alignment.h"

#include "math_functions.h"

#include 
#include 
#include 
#include 

#include "common_net.h"
#include "bias_adder_net.h"
#include "bn_net.h"
#include "conv_net.h"
#include "eltwise_net.h"
#include "inner_product_net.h"
#include "max_pooling_net.h"
#include "spatial_transform_net.h"
#include "pad_net.h"

REGISTER_NET_CLASS(Common);
REGISTER_NET_CLASS(BiasAdder);
REGISTER_NET_CLASS(Bn);
REGISTER_NET_CLASS(Conv);
REGISTER_NET_CLASS(Eltwise);
REGISTER_NET_CLASS(InnerProduct);
REGISTER_NET_CLASS(MaxPooling);
REGISTER_NET_CLASS(SpatialTransform);
REGISTER_NET_CLASS(Pad);

using namespace seeta;

#define TEST(major, minor) major##_##minor##_Tester()
#define EXPECT_NE(a, b) if ((a) == (b)) std::cout << "ERROR: "
#define EXPECT_EQ(a, b) if ((a) != (b)) std::cout << "ERROR: "

#ifdef _WIN32
std::string DATA_DIR = "../../data/";
std::string MODEL_DIR = "../../model/";
#else
std::string DATA_DIR = "../data/";
std::string MODEL_DIR = "../model/";
#endif


int main(int argc, char* argv[]) {

    // Initialize face detection model
  seeta::FaceDetection detector("./seeta_fd_frontal_v1.0.bin");
  detector.SetMinFaceSize(40);
  detector.SetScoreThresh(2.f);
  detector.SetImagePyramidScaleFactor(0.8f);
  detector.SetWindowStep(4, 4);

  // Initialize face alignment model 
  seeta::FaceAlignment point_detector("./seeta_fa_v1.1.bin");

  // Initialize face Identification model 
  FaceIdentification face_recognizer((MODEL_DIR + "seeta_fr_v1.0.bin").c_str());
  std::string test_dir = DATA_DIR + "test_face_recognizer/";

  //load image
  /*cv::Mat gallery_img_color = cv::imread(test_dir + "images/compare_im/30.jpg", 1);
  cv::Mat gallery_img_gray;
  cv::cvtColor(gallery_img_color, gallery_img_gray, CV_BGR2GRAY);

  FILE *fp1=fopen("pic/pic30","wb");
  if(fp1==0)
    return 0;
  fwrite(gallery_img_color.data, gallery_img_color.dataend - gallery_img_color.datastart + 3, 1, fp1);
  fclose(fp1);

  FILE *fp2=fopen("pic/pic30_g","wb");
  if(fp2==0)
    return 0;
  fwrite(gallery_img_gray.data, gallery_img_gray.dataend - gallery_img_gray.datastart + 1, 1, fp2);
  fclose(fp2);

  cv::Mat probe_img_color = cv::imread(test_dir + "images/compare_im/31.jpg", 1);
  cv::Mat probe_img_gray;
  cv::cvtColor(probe_img_color, probe_img_gray, CV_BGR2GRAY);

  FILE *fp3=fopen("pic/pic31","wb");
  if(fp3==0)
    return 0;
  fwrite(probe_img_color.data, probe_img_color.dataend - probe_img_color.datastart + 3, 1, fp3);
  fclose(fp3);

  FILE *fp4=fopen("pic/pic31_g","wb");
  if(fp4==0)
    return 0;
  fwrite(probe_img_gray.data, probe_img_gray.dataend - probe_img_gray.datastart + 1, 1, fp4);
  fclose(fp4);

  ImageData gallery_img_data_color(gallery_img_color.cols, gallery_img_color.rows, gallery_img_color.channels());
  gallery_img_data_color.data = gallery_img_color.data;

  ImageData gallery_img_data_gray(gallery_img_gray.cols, gallery_img_gray.rows, gallery_img_gray.channels());
  gallery_img_data_gray.data = gallery_img_gray.data;

  ImageData probe_img_data_color(probe_img_color.cols, probe_img_color.rows, probe_img_color.channels());
  probe_img_data_color.data = probe_img_color.data;

  ImageData probe_img_data_gray(probe_img_gray.cols, probe_img_gray.rows, probe_img_gray.channels());
  probe_img_data_gray.data = probe_img_gray.data;
*/

    cv::Mat srcImage=cv::imread("test.jpg");
         if (srcImage.empty())
         {
            std::cout << "Please take an image!";
            return 0;
          }
    cv::resize(srcImage,srcImage,cv::Size(250,250),0,0,CV_INTER_LINEAR);

    imwrite("test.jpg", srcImage);
    cv::Mat srcImage_gray;
    cv::cvtColor(srcImage,srcImage_gray, CV_BGR2GRAY);
    FILE *fp11=fopen("test","wb");
    if(fp11==0)
      return 0;
    fwrite(srcImage.data, srcImage.dataend - srcImage.datastart + 3, 1, fp11);
    fclose(fp11);

    FILE *fp22=fopen("test_g","wb");
    if(fp22==0)
      return 0;
    fwrite(srcImage_gray.data, srcImage_gray.dataend - srcImage_gray.datastart + 1, 1, fp22);
    fclose(fp22);


  string name[] = { "pic/pic01", "pic/pic01_g", "pic/pic02", "pic/pic02_g",
          "pic/pic03", "pic/pic03_g","pic/pic04", "pic/pic04_g","pic/pic05", "pic/pic05_g",
          "pic/pic06", "pic/pic06_g","pic/pic07", "pic/pic07_g","pic/pic08", "pic/pic08_g",
          "pic/pic09", "pic/pic09_g","pic/pic10", "pic/pic10_g","pic/pic11", "pic/pic11_g",
          "pic/pic12", "pic/pic12_g","pic/pic13", "pic/pic13_g","pic/pic14", "pic/pic14_g",
          "pic/pic15", "pic/pic15_g","pic/pic16", "pic/pic16_g","pic/pic17", "pic/pic17_g",
          "pic/pic18", "pic/pic18_g","pic/pic19", "pic/pic19_g","pic/pic20", "pic/pic20_g",
          "pic/pic21", "pic/pic21_g","pic/pic22", "pic/pic22_g","pic/pic23", "pic/pic23_g",
          "pic/pic24", "pic/pic24_g","pic/pic25", "pic/pic25_g","pic/pic26", "pic/pic26_g",
          "pic/pic27", "pic/pic27_g","pic/pic28", "pic/pic28_g","pic/pic29", "pic/pic29_g",
          "pic/pic30", "pic/pic30_g","pic/pic31", "pic/pic31_g"};



      ImageData gallery_img_data_color(250, 250, 3);
      FILE *fp1a=fopen("test","rb");
      if(fp1a==0)
        return 0;
      gallery_img_data_color.data = new uint8_t[250 * 250 * 3 + 3];
      fread(gallery_img_data_color.data, 250 * 250 * 3 + 3, 1, fp1a);
      fclose(fp1a);

      ImageData gallery_img_data_gray(250, 250, 1);
      FILE *fp2a=fopen("test_g","rb");
      if(fp2a==0)
        return 0;
      gallery_img_data_gray.data = new uint8_t[250 * 250 + 1];
      fread(gallery_img_data_gray.data, 250 * 250 + 1, 1, fp2a);
      fclose(fp2a);


  //std::ifstream ifs;//pc
 // std::string img_name;//pc
  //ifs.open("test_file_list1.txt", std::ifstream::in);//pc
  //int img_num = 0;
 // while (ifs >> img_name) {
    //img_num ++ ;
    // read image
    //cv::Mat src_img = cv::imread(img_name, 1);
   // EXPECT_NE(src_img.data, nullptr) << "Load image error!";
  //}
      float mx=0;
      int temp=0;
for (int i=0;i<3;i++ ){
  ImageData probe_img_data_color(250, 250, 3);
  FILE *fp3a=fopen(name[2*i].c_str(),"rb");
  if(fp3a==0)
    return 0;
  probe_img_data_color.data = new uint8_t[250 * 250 * 3 + 3];
  fread(probe_img_data_color.data, 250 * 250 * 3 + 3, 1, fp3a);
  fclose(fp3a);

  ImageData probe_img_data_gray(250, 250, 1);
  FILE *fp4a=fopen(name[2*i+1].c_str(),"rb");
  if(fp4a==0)
    return 0;
  probe_img_data_gray.data = new uint8_t[250 * 250 + 1];
  fread(probe_img_data_gray.data, 250 * 250 + 1, 1, fp4a);
  fclose(fp4a);


  // Detect faces
  std::vector gallery_faces = detector.Detect(gallery_img_data_gray);
  int32_t gallery_face_num = static_cast(gallery_faces.size());

  std::vector probe_faces = detector.Detect(probe_img_data_gray);
  int32_t probe_face_num = static_cast(probe_faces.size());

  if (gallery_face_num == 0 || probe_face_num==0)
  {
    std::cout << "Faces are not detected.";
    return 0;
  }
  /*3-14for (int32_t i = 0; i < 1; i++) {
    //face_rect.x = faces[i].bbox.x;
    //face_rect.y = faces[i].bbox.y;
    //face_rect.width = faces[i].bbox.width;
    //face_rect.height = faces[i].bbox.height;

    cout << "x =" << gallery_faces[i].bbox.x << endl;
    cout << "y =" << gallery_faces[i].bbox.y << endl;
    cout << "w =" << gallery_faces[i].bbox.width << endl;
    cout << "h =" << gallery_faces[i].bbox.height << endl;
    cout << "x =" << probe_faces[i].bbox.x << endl;
    cout << "y =" << probe_faces[i].bbox.y << endl;
    cout << "w =" << probe_faces[i].bbox.width << endl;
    cout << "h =" << probe_faces[i].bbox.height << endl;

    //cv::rectangle(img, face_rect, CV_RGB(0, 0, 255), 4, 8, 0);
  }*/

  // Detect 5 facial landmarks
  seeta::FacialLandmark gallery_points[5];
  point_detector.PointDetectLandmarks(gallery_img_data_gray, gallery_faces[0], gallery_points);

  seeta::FacialLandmark probe_points[5];
  point_detector.PointDetectLandmarks(probe_img_data_gray, probe_faces[0], probe_points);

/*  for (int i = 0; i<5; i++)
  {
    cv::circle(gallery_img_color, cv::Point(gallery_points[i].x, gallery_points[i].y), 2,
      CV_RGB(0, 255, 0));
    cv::circle(probe_img_color, cv::Point(probe_points[i].x, probe_points[i].y), 2,
      CV_RGB(0, 255, 0));
  }*/
  //cv::imwrite("gallery_point_result.jpg", gallery_img_color);
  //cv::imwrite("probe_point_result.jpg", probe_img_color);
  // Extract face identity feature
  float gallery_fea[2048];
  float probe_fea[2048];
/*3-14for(int i = 0; i<5; i++){
std::cout<
  face_recognizer.ExtractFeatureWithCrop(gallery_img_data_color, gallery_points, gallery_fea);
  face_recognizer.ExtractFeatureWithCrop(probe_img_data_color, probe_points, probe_fea);

  // Caculate similarity of two faces
  float sim = face_recognizer.CalcSimilarity(gallery_fea, probe_fea);
  std::cout << sim << std::endl;
  if(sim>mx)
  {
      mx=sim;
      std::cout << mx << std::endl;
      temp=i;
      std::cout << temp << std::endl;
  }
}
  //std::cout << mx << std::endl;
  if(mx>0.72)
  {cout<<" the most likely pic is "<2*temp]<else
    cout<<" The image library does not have the person."<return 0;
}

cpan@admin0-PowerEdge-R730:~/workspace/SeetaFaceEngine-master/FaceIdentification/build2$ make -j8

cpan@admin0-PowerEdge-R730:~/workspace/SeetaFaceEngine-master/FaceIdentification/build2$ ./src/test/test_face_verification.bin

经过在Linux环境下测试运行通过将code复制到Xilinx公司的SDSOC SDK运行release生成SD_Card目录下的文件,copy到SD卡上运行,SDSOC上的代码code为:

#include
using namespace std;

//#include 
//#include 
#include "face_identification.h"
#include "recognizer.h"
#include "face_detection.h"
#include "face_alignment.h"

#include "math_functions.h"

#include 
#include 
#include 
#include 

#include "common_net.h"
#include "bias_adder_net.h"
#include "bn_net.h"
#include "conv_net.h"
#include "eltwise_net.h"
#include "inner_product_net.h"
#include "max_pooling_net.h"
#include "spatial_transform_net.h"
#include "pad_net.h"

REGISTER_NET_CLASS(Common);
REGISTER_NET_CLASS(BiasAdder);
REGISTER_NET_CLASS(Bn);
REGISTER_NET_CLASS(Conv);
REGISTER_NET_CLASS(Eltwise);
REGISTER_NET_CLASS(InnerProduct);
REGISTER_NET_CLASS(MaxPooling);
REGISTER_NET_CLASS(SpatialTransform);
REGISTER_NET_CLASS(Pad);

using namespace seeta;

#define TEST(major, minor) major##_##minor##_Tester()
#define EXPECT_NE(a, b) if ((a) == (b)) std::cout << "ERROR: "
#define EXPECT_EQ(a, b) if ((a) != (b)) std::cout << "ERROR: "

#ifdef _WIN32
std::string DATA_DIR = "../../data/";
std::string MODEL_DIR = "../../model/";
#else
std::string DATA_DIR = "../data/";
std::string MODEL_DIR = "../model/";
#endif


int main(int argc, char* argv[]) {

     string name[] = { "pic/pic01", "pic/pic01_g", "pic/pic02", "pic/pic02_g",
                  "pic/pic03", "pic/pic03_g","pic/pic04", "pic/pic04_g","pic/pic05", "pic/pic05_g",
                  "pic/pic06", "pic/pic06_g","pic/pic07", "pic/pic07_g","pic/pic08", "pic/pic08_g",
                  "pic/pic09", "pic/pic09_g","pic/pic10", "pic/pic10_g","pic/pic11", "pic/pic11_g",
                  "pic/pic12", "pic/pic12_g","pic/pic13", "pic/pic13_g","pic/pic14", "pic/pic14_g",
                  "pic/pic15", "pic/pic15_g","pic/pic16", "pic/pic16_g","pic/pic17", "pic/pic17_g",
                  "pic/pic18", "pic/pic18_g","pic/pic19", "pic/pic19_g","pic/pic20", "pic/pic20_g",
                  "pic/pic21", "pic/pic21_g","pic/pic22", "pic/pic22_g","pic/pic23", "pic/pic23_g",
                  "pic/pic24", "pic/pic24_g","pic/pic25", "pic/pic25_g","pic/pic26", "pic/pic26_g",
                  "pic/pic27", "pic/pic27_g","pic/pic28", "pic/pic28_g","pic/pic29", "pic/pic29_g",
                  "pic/pic30", "pic/pic30_g","pic/pic31", "pic/pic31_g"};
      //int res[10];

      ImageData gallery_img_data_color(250, 250, 3);
      FILE *fp1=fopen("test","rb");

      //FILE *fp1=fopen("./mnt/pic1","rb");
      if(fp1==0)
        return 0;
      gallery_img_data_color.data = new uint8_t[250 * 250 * 3 + 3];
      fread(gallery_img_data_color.data, 250 * 250 * 3 + 3, 1, fp1);
      fclose(fp1);

      ImageData gallery_img_data_gray(250, 250, 1);
      FILE *fp2=fopen("test_g","rb");
      //FILE *fp2=fopen("./mnt/pic1_g","rb");
      if(fp2==0)
        return 0;
      gallery_img_data_gray.data = new uint8_t[250 * 250 + 1];
      fread(gallery_img_data_gray.data, 250 * 250 + 1, 1, fp2);
      fclose(fp2);
      float mx=0;
      int temp=0;
for (int i=0;i<6;i++ ){
      ImageData probe_img_data_color(250, 250, 3);
      FILE *fp3=fopen(name[2*i].c_str(),"rb");//!!!!!!!!
      //FILE *fp3=fopen("./mnt/pic2","rb");
      if(fp3==0)
        return 0;
      probe_img_data_color.data = new uint8_t[250 * 250 * 3 + 3];
      fread(probe_img_data_color.data, 250 * 250 * 3 + 3, 1, fp3);
      fclose(fp3);

      ImageData probe_img_data_gray(250, 250, 1);
      FILE *fp4=fopen(name[2*i+1].c_str(),"rb");//!!!!!!
      //FILE *fp4=fopen("./mnt/pic2_g","rb");
      if(fp4==0)
        return 0;
      probe_img_data_gray.data = new uint8_t[250 * 250 + 1];
      fread(probe_img_data_gray.data, 250 * 250 + 1, 1, fp4);
      fclose(fp4);

  perf_counter main_ctr;
  main_ctr.start();

  // Initialize face detection model
  seeta::FaceDetection detector("./mnt/seeta_fd_frontal_v1.0.bin");
  detector.SetMinFaceSize(40);
  detector.SetScoreThresh(2.f);
  detector.SetImagePyramidScaleFactor(0.8f);
  detector.SetWindowStep(4, 4);

  // Initialize face alignment model 
  seeta::FaceAlignment point_detector("./mnt/seeta_fa_v1.1.bin");

  // Initialize face Identification model 
  FaceIdentification face_recognizer("./mnt/seeta_fr_v1.0.bin");

  // Detect faces
  std::vector gallery_faces = detector.Detect(gallery_img_data_gray);
  int32_t gallery_face_num = static_cast(gallery_faces.size());

  std::vector probe_faces = detector.Detect(probe_img_data_gray);
  int32_t probe_face_num = static_cast(probe_faces.size());

  if (gallery_face_num == 0 || probe_face_num==0)
  {
    std::cout << "Faces are not detected.";
    return 0;
  }

  // Detect 5 facial landmarks
  seeta::FacialLandmark gallery_points[5];
  point_detector.PointDetectLandmarks(gallery_img_data_gray, gallery_faces[0], gallery_points);

  seeta::FacialLandmark probe_points[5];
  point_detector.PointDetectLandmarks(probe_img_data_gray, probe_faces[0], probe_points);

  // Extract face identity feature
  float gallery_fea[2048];
  float probe_fea[2048];
  face_recognizer.ExtractFeatureWithCrop(gallery_img_data_color, gallery_points, gallery_fea);
  face_recognizer.ExtractFeatureWithCrop(probe_img_data_color, probe_points, probe_fea);

  // Caculate similarity of two faces
  float sim = face_recognizer.CalcSimilarity(gallery_fea, probe_fea);
  std::cout << sim <if(sim>mx)
  {
      mx=sim;
      std::cout << mx << std::endl;
      temp=i;
      std::cout << temp << std::endl;
  }

  main_ctr.stop();
  std::cout << main_ctr.avg_cpu_cycles() <if(mx>0.7)
{cout<<" the most likely pic is "<2*temp]<else
    cout<<" The image library does not have the person."<return 0;
}

Linux 硬件加速 开源人脸识别引擎SeetaFace:第二步在ZedBoard上运行_第1张图片

程序在经过FPGA加速后运行时间减少一半

Tips:
1、SDSOC: FPGA加速时波特率设置100Mhz matrix_product_hz1
一般刚跑程序时,只需要勾选:Generate SD Card Image 与Estimate Performance
Generate SD Card Image这个将生成的网标文件elf和BIN文件拷贝到板子上运行
Estimate Performance:模拟综合,看资源消耗情况
需要加入FPGA加速的时候,勾选Generate Bitstream,配置FPGA部分,消耗时间长

2、将SDSOC下lab运行处的SD_card所有程序copy到mnt下
运行时将图像库pic放在主目录下,把test与test_g也放在主目录下
运行程序./mnt/SeetaFace.elf

3、由于不用opencv库,所以通过/home/cpan/workspace/SeetaFaceEnginemaster/FaceIdentification/build2下,
运行make -j8
生成test_face_verification.bin文件,在运行该文件
./src/test/test_face_verification.bin
这个是在Linux下跑的源程序,可以输入需要处理的图像,利用OpenCV生成test与test_g,当在板子上运行时,需要将测试的这两个文件拷贝到板子上去。

你可能感兴趣的:(caffe)