回溯算法原理:
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
代码示例:
import java.util.Arrays;
public class Backtracking {
// 回溯
static void f(int a[], int k) {
if (k == a.length - 1) {
display(a);
return;
}
for (int i = k; i < a.length; i++) {
int temp = a[i];
a[i] = a[k];
a[k] = temp;
f(a, k + 1);
temp = a[i];
a[i] = a[k];
a[k] = temp;
}
}
// 筛选
static void display(int a[]) {
System.out.println(Arrays.toString(a));
}
public static void main(String[] args) {
// 要进行回溯的数组
int[] a = new int[] { 1, 2, 3, 4, 5 };
f(a, 0);
}
}
输出结果:
[1, 2, 3, 4, 5]
[1, 2, 3, 5, 4]
[1, 2, 4, 3, 5]
[1, 2, 4, 5, 3]
[1, 2, 5, 4, 3]
[1, 2, 5, 3, 4]
[1, 3, 2, 4, 5]
[1, 3, 2, 5, 4]
[1, 3, 4, 2, 5]
[1, 3, 4, 5, 2]
[1, 3, 5, 4, 2]
[1, 3, 5, 2, 4]
[1, 4, 3, 2, 5]
[1, 4, 3, 5, 2]
[1, 4, 2, 3, 5]
[1, 4, 2, 5, 3]
[1, 4, 5, 2, 3]
[1, 4, 5, 3, 2]
[1, 5, 3, 4, 2]
[1, 5, 3, 2, 4]
[1, 5, 4, 3, 2]
[1, 5, 4, 2, 3]
[1, 5, 2, 4, 3]
[1, 5, 2, 3, 4]
[2, 1, 3, 4, 5]
[2, 1, 3, 5, 4]
[2, 1, 4, 3, 5]
[2, 1, 4, 5, 3]
[2, 1, 5, 4, 3]
[2, 1, 5, 3, 4]
[2, 3, 1, 4, 5]
[2, 3, 1, 5, 4]
[2, 3, 4, 1, 5]
[2, 3, 4, 5, 1]
[2, 3, 5, 4, 1]
[2, 3, 5, 1, 4]
[2, 4, 3, 1, 5]
[2, 4, 3, 5, 1]
[2, 4, 1, 3, 5]
[2, 4, 1, 5, 3]
[2, 4, 5, 1, 3]
[2, 4, 5, 3, 1]
[2, 5, 3, 4, 1]
[2, 5, 3, 1, 4]
[2, 5, 4, 3, 1]
[2, 5, 4, 1, 3]
[2, 5, 1, 4, 3]
[2, 5, 1, 3, 4]
[3, 2, 1, 4, 5]
[3, 2, 1, 5, 4]
[3, 2, 4, 1, 5]
[3, 2, 4, 5, 1]
[3, 2, 5, 4, 1]
[3, 2, 5, 1, 4]
[3, 1, 2, 4, 5]
[3, 1, 2, 5, 4]
[3, 1, 4, 2, 5]
[3, 1, 4, 5, 2]
[3, 1, 5, 4, 2]
[3, 1, 5, 2, 4]
[3, 4, 1, 2, 5]
[3, 4, 1, 5, 2]
[3, 4, 2, 1, 5]
[3, 4, 2, 5, 1]
[3, 4, 5, 2, 1]
[3, 4, 5, 1, 2]
[3, 5, 1, 4, 2]
[3, 5, 1, 2, 4]
[3, 5, 4, 1, 2]
[3, 5, 4, 2, 1]
[3, 5, 2, 4, 1]
[3, 5, 2, 1, 4]
[4, 2, 3, 1, 5]
[4, 2, 3, 5, 1]
[4, 2, 1, 3, 5]
[4, 2, 1, 5, 3]
[4, 2, 5, 1, 3]
[4, 2, 5, 3, 1]
[4, 3, 2, 1, 5]
[4, 3, 2, 5, 1]
[4, 3, 1, 2, 5]
[4, 3, 1, 5, 2]
[4, 3, 5, 1, 2]
[4, 3, 5, 2, 1]
[4, 1, 3, 2, 5]
[4, 1, 3, 5, 2]
[4, 1, 2, 3, 5]
[4, 1, 2, 5, 3]
[4, 1, 5, 2, 3]
[4, 1, 5, 3, 2]
[4, 5, 3, 1, 2]
[4, 5, 3, 2, 1]
[4, 5, 1, 3, 2]
[4, 5, 1, 2, 3]
[4, 5, 2, 1, 3]
[4, 5, 2, 3, 1]
[5, 2, 3, 4, 1]
[5, 2, 3, 1, 4]
[5, 2, 4, 3, 1]
[5, 2, 4, 1, 3]
[5, 2, 1, 4, 3]
[5, 2, 1, 3, 4]
[5, 3, 2, 4, 1]
[5, 3, 2, 1, 4]
[5, 3, 4, 2, 1]
[5, 3, 4, 1, 2]
[5, 3, 1, 4, 2]
[5, 3, 1, 2, 4]
[5, 4, 3, 2, 1]
[5, 4, 3, 1, 2]
[5, 4, 2, 3, 1]
[5, 4, 2, 1, 3]
[5, 4, 1, 2, 3]
[5, 4, 1, 3, 2]
[5, 1, 3, 4, 2]
[5, 1, 3, 2, 4]
[5, 1, 4, 3, 2]
[5, 1, 4, 2, 3]
[5, 1, 2, 4, 3]
[5, 1, 2, 3, 4]