Cross Entropy Loss 交叉熵损失函数公式推导

表达式

输出标签表示为{0,1}时,损失函数表达式为:

$L = -[y log \hat{y} + (1-y)log(1- \hat{y})]$

二分类

二分类问题,假设 y∈{0,1}

正例:$P(y = 1| x) = \hat{y}$ 公式1

反例:$P(y=0|x) = 1-\hat{y}$ 公式2

联立

将上述两式连乘。

$P(y|x) = \hat{y}^{y} * (1-\hat{y})^{(1-y)}$ ;其中y∈{0,1} 公式3

当y=1时,公式3和公式1一样。
当y=0时,公式3和公式2一样。

取对数

取对数,方便运算,也不会改变函数的单调性。
$ logp(y|x) =ylog\hat{y} + (1-y)log(1-\hat{y})$ 公式4

我们希望$P(y|x)$越大越好,即让负值$-logP(y|x)$越小越好,得到损失函数为:
$L = -[y log \hat{y} + (1-y)log(1- \hat{y})]$ 公式5

参考阅读

《简单的交叉熵损失函数,你真的懂了吗?》
《确定不收藏?机器学习必备的分类损失函数速查手册》

补充

上面说的都是一个样本的时候,多个样本的表达式是:

多个样本的概率即联合概率,等于每个的乘积。
$p(y|x) = \prod _{i}^{m} p(y^{(i)}| x^{(i)})$

$log p(y|x) = \sum _{i}^{m} log p(y^{(i)}| x^{(i)})$

由公式4和公式5得到
$logp(y^{(i)}| x^{(i)}) = - L(y^{(i)}| x^{(i)})$

$ logp(y^{(i)}| x^{(i)})=-\sum _{i}^{m}L(y^{(i)}| x^{(i)}) $

加上$\frac{1}{m}$对式子进行缩放,便于计算。

Cost (min) : $J(w,b) =\frac{1}{m}\sum _{i}^{m} L(y^{(i)}| x^{(i)}) $

或者写作:
$J = - \frac{1}{m}\Sigma_{i=1}^{m}[y^{(i)} log \hat{y}^{(i)} + (1-y^{(i)})log(1- \hat{y}^{(i)})]$

扩展

交叉熵和KL散度有着密切联系。
https://blog.csdn.net/haolexiao/article/details/7014257

你可能感兴趣的:(Cross Entropy Loss 交叉熵损失函数公式推导)