混合高斯背景模型及opencv实现


一、理论

混合高斯背景建模是基于像素样本统计信息的背景表示方法,利用像素在较长时间内大量样本值的概率密度等统计信息(如模式数量、每个模式的均值和标准差)表示背景,然后使用统计差分(如3σ原则)进行目标像素判断,可以对复杂动态背景进行建模,计算量较大。

在混合高斯背景模型中,认为像素之间的颜色信息互不相关,对各像素点的处理都是相互独立的。对于视频图像中的每一个像素点,其值在序列图像中的变化可看作是不断产生像素值的随机过程,即用高斯分布来描述每个像素点的颜色呈现规律【单模态(单峰),多模态(多峰)】。

对于多峰高斯分布模型,图像的每一个像素点按不同权值的多个高斯分布的叠加来建模,每种高斯分布对应一个可能产生像素点所呈现颜色的状态,各个高斯分布的权值和分布参数随时间更新。当处理彩色图像时,假定图像像素点R、G、B三色通道相互独立并具有相同的方差。对于随机变量 X 的观测数据集{ x1 , x2 ,…, xN }, xt =( rt , gt , bt )为 t 时刻像素的样本,则单个采样点 xt 其服从的混合高斯分布概率密度函数:


其中k为分布模式总数,η(xt,μi,tτi,t)为t时刻第i个高斯分布,μi,t为其均值,τi,t为其协方差矩阵,δi,t为方差,I为三维单位矩阵,ωi,tt时刻第i个高斯分布的权重。

详细算法流程:




二、代码实现

#include "stdafx.h"
#include "cv.h"
#include "highgui.h"

int _tmain(int argc, _TCHAR* argv[])
{
	CvCapture *capture=cvCreateFileCapture("test.avi");
	IplImage *mframe,*current,*frg,*test;
	int *fg,*bg_bw,*rank_ind;
	double *w,*mean,*sd,*u_diff,*rank;
	int C,M,sd_init,i,j,k,m,rand_temp=0,rank_ind_temp=0,min_index=0,x=0,y=0,counter_frame=0;
	double D,alph,thresh,p,temp;
	CvRNG state;
	int match,height,width;
	mframe=cvQueryFrame(capture);

	frg = cvCreateImage(cvSize(mframe->width,mframe->height),IPL_DEPTH_8U,1);
	current = cvCreateImage(cvSize(mframe->width,mframe->height),IPL_DEPTH_8U,1);
	test = cvCreateImage(cvSize(mframe->width,mframe->height),IPL_DEPTH_8U,1);
	
	C = 4;						//number of gaussian components (typically 3-5)
	M = 4;						//number of background components
	sd_init = 6;				//initial standard deviation (for new components) var = 36 in paper
	alph = 0.01;				//learning rate (between 0 and 1) (from paper 0.01)
	D = 2.5;					//positive deviation threshold
	thresh = 0.25;				//foreground threshold (0.25 or 0.75 in paper)
	p = alph/(1/C);			//initial p variable (used to update mean and sd)

	height=current->height;width=current->widthStep;
	
	fg = (int *)malloc(sizeof(int)*width*height);					//foreground array
	bg_bw = (int *)malloc(sizeof(int)*width*height);				//background array
	rank = (double *)malloc(sizeof(double)*1*C);					//rank of components (w/sd)
	w = (double *)malloc(sizeof(double)*width*height*C);			//weights array
	mean = (double *)malloc(sizeof(double)*width*height*C);			//pixel means
	sd = (double *)malloc(sizeof(double)*width*height*C);			//pixel standard deviations
	u_diff = (double *)malloc(sizeof(double)*width*height*C);		//difference of each pixel from mean
	
	for (i=0;iimageData[i*width+j]-mean[i*width*C+j*C+m]);
				}
			}
		}
		//update gaussian components for each pixel
		for (i=0;iimageData[i*width+j];
						 sd[i*width*C+j*C+k] =sqrt((1-p)*(sd[i*width*C+j*C+k]*sd[i*width*C+j*C+k]) + p*(pow((uchar)current->imageData[i*width+j] - mean[i*width*C+j*C+k],2)));
					}else{
						w[i*width*C+j*C+k] = (1-alph)*w[i*width*C+j*C+k];			// weight slighly decreases
					}
					temp += w[i*width*C+j*C+k];
				}
				
				for(k=0;kimageData[i*width+j] = (uchar)bg_bw[i*width+j];

				//if no components match, create new component
				if (match == 0)
				{
					mean[i*width*C+j*C+min_index] = (uchar)current->imageData[i*width+j];
					//printf("%d ",(uchar)bg->imageData[i*width+j]);
					sd[i*width*C+j*C+min_index] = sd_init;
				}
				for (k=0;k rank[m])
						{
							//swap max values
							rand_temp = rank[m];
							rank[m] = rank[k];
							rank[k] = rand_temp;

							//swap max index values
							rank_ind_temp = rank_ind[m];
							rank_ind[m] = rank_ind[k];
							rank_ind[k] = rank_ind_temp;
						}
					}
				}

				//calculate foreground
				match = 0;k = 0;
				//frg->imageData[i*width+j]=0;
				while ((match == 0)&&(k= thresh)
						if (abs(u_diff[i*width*C+j*C+rank_ind[k]]) <= D*sd[i*width*C+j*C+rank_ind[k]]){
							frg->imageData[i*width+j] = 0;
							match = 1;
						}
						else
							frg->imageData[i*width+j] = (uchar)current->imageData[i*width+j];     
					k = k+1;
				}
			}
		}		

		mframe = cvQueryFrame(capture);
		cvShowImage("fore",frg);
		cvShowImage("back",test);
		char s=cvWaitKey(33);
		if(s==27) break;
		free(rank_ind);
	}
	
	free(fg);free(w);free(mean);free(sd);free(u_diff);free(rank);
	cvNamedWindow("back",0);
	cvNamedWindow("fore",0);
	cvReleaseCapture(&capture);
	cvDestroyWindow("fore");
	cvDestroyWindow("back");
	return 0;
}

实验结果:

前景:


背景:




你可能感兴趣的:(Opencv学习笔记)