即将到来金三银四人才招聘的高峰期,渴望跳槽的朋友肯定跟我一样四处找以往的面试题,但又感觉找的又不完整,在这里我将把我所见到的题目做一总结,并尽力将答案术语化、标准化。预祝大家面试顺利。
术语会让你的面试更有说服力,让你感觉更踏实,建议大家多记背点术语。
术语:操作系统指令集、屏蔽系统之间的差异
由于各种操作系统所支持的指令集不是完全一致,所以在操作系统之上加个虚拟机可以来提供统一接口,屏蔽系统之间的差异。
有八种基本数据类型。
各自占用几字节也记一下。
面向对象的编程语言有封装、继承 、抽象、多态等4个主要的特征。
封装: 把描述一个对象的属性和行为的代码封装在一个模块中,也就是一个类中,属性用变量定义,行为用方法进行定义,方法可以直接访问同一个对象中的属性。
抽象: 把现实生活中的对象抽象为类。分为过程抽象和数据抽象
继承:子类继承父类的特征和行为。子类可以有父类的方法,属性(非private)。子类也可以对父类进行扩展,也可以重写父类的方法。缺点就是提高代码之间的耦合性。
多态: 多态是指程序中定义的引用变量所指向的具体类型和通过该引用变量发出的方法调用在编程时并不确定,而是在程序运行期间才确定(比如:向上转型,只有运行才能确定其对象属性)。方法覆盖和重载体现了多态性。
术语:让基本类型也具有对象的特征
为了让基本类型也具有对象的特征,就出现了包装类型(如我们在使用集合类型Collection时就一定要使用包装类型而非基本类型)因为容器都是装object的,这是就需要这些基本类型的包装器类了。
自动装箱:new Integer(6);
,底层调用:Integer.valueOf(6)
自动拆箱: int i = new Integer(6);
,底层调用i.intValue();方法实现。
Integer i = 6;
Integer j = 6;
System.out.println(i==j);
答案在下面这段代码中找:
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
二者的区别:
我们来看看String重写的equals方法:
它不止判断了内存地址,还增加了字符串是否相同的比较。
public boolean equals(Object anObject) {
//判断内存地址是否相同
if (this == anObject) {
return true;
}
// 判断参数类型是否是String类型
if (anObject instanceof String) {
// 强转
String anotherString = (String)anObject;
int n = value.length;
// 判断两个字符串长度是否相等
if (n == anotherString.value.length) {
char v1[] = value;
char v2[] = anotherString.value;
int i = 0;
// 一一比较 字符是否相同
while (n-- != 0) {
if (v1[i] != v2[i])
return false;
i++;
}
return true;
}
}
return false;
}
java中String、StringBuffer、StringBuilder是编程中经常使用的字符串类,他们之间的区别也是经常在面试中会问到的问题。现在总结一下,看看他们的不同与相同。
1. 数据可变和不可变
2. 线程安全
通过他们的append()方法来看,StringBuffer是有同步锁,而StringBuilder没有:
@Override
public synchronized StringBuffer append(Object obj) {
toStringCache = null;
super.append(String.valueOf(obj));
return this;
}
@Override
public StringBuilder append(String str) {
super.append(str);
return this;
}
3. 相同点
StringBuilder
与StringBuffer
有公共父类AbstractStringBuilder
。
最后,操作可变字符串速度:StringBuilder > StringBuffer > String
,这个答案就显得不足为奇了。
set根据equals和hashcode判断,一个对象要存储在Set中,必须重写equals和hashCode方法
之前专门有写过ArrayList和LinkedList源码的文章。
public class Test {
public static void main(String[] args) {
ArrayList list = new ArrayList();
list.add(2);
Iterator iterator = list.iterator();
while(iterator.hasNext()){
Integer integer = iterator.next();
if(integer==2)
list.remove(integer);
}
}
}
执行上段代码是有问题的,会抛出ConcurrentModificationException异常。
原因:调用list.remove()方法导致modCount和expectedModCount的值不一致。
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
解决办法:在迭代器中如果要删除元素的话,需要调用Iterator类的remove方法。
public class Test {
public static void main(String[] args) {
ArrayList list = new ArrayList();
list.add(2);
Iterator iterator = list.iterator();
while(iterator.hasNext()){
Integer integer = iterator.next();
if(integer==2)
iterator.remove(); //注意这个地方
}
}
}
相同点:
不同点:
什么是fail-fast? 就是最快的时间能把错误抛出而不是让程序执行。
1. 如何保证线程安全又效率高?
Java 5提供了ConcurrentHashMap,它是HashTable的替代,比HashTable的扩展性更好。
ConcurrentHashMap将整个Map分为N个segment(类似HashTable),可以提供相同的线程安全,但是效率提升N倍,默认N为16。
2. 我们能否让HashMap同步?
HashMap可以通过下面的语句进行同步: Map m = Collections.synchronizeMap(hashMap);
答案:字节流
1. 什么是字节流,什么是字符流?
2. 答案
我们并不支持下载的文件有没有包含字节流(图片、影像、音源),所以考虑到通用性,我们会用字节流。
这个之前自己做过总结,也算比较全面。
1. 方法一:继承Thread类,作为线程对象存在(继承Thread对象)
public class CreatThreadDemo1 extends Thread{
/**
* 构造方法: 继承父类方法的Thread(String name);方法
* @param name
*/
public CreatThreadDemo1(String name){
super(name);
}
@Override
public void run() {
while (!interrupted()){
System.out.println(getName()+"线程执行了...");
try {
Thread.sleep(200);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public static void main(String[] args) {
CreatThreadDemo1 d1 = new CreatThreadDemo1("first");
CreatThreadDemo1 d2 = new CreatThreadDemo1("second");
d1.start();
d2.start();
d1.interrupt(); //中断第一个线程
}
}
常规方法,不多做介绍了,interrupted方法,是来判断该线程是否被中断。(终止线程不允许用stop方法,该方法不会施放占用的资源。所以我们在设计程序的时候,要按照中断线程的思维去设计,就像上面的代码一样)。
让线程等待的方法
2. 方法二:实现runnable接口,作为线程任务存在
public class CreatThreadDemo2 implements Runnable {
@Override
public void run() {
while (true){
System.out.println("线程执行了...");
}
}
public static void main(String[] args) {
//将线程任务传给线程对象
Thread thread = new Thread(new CreatThreadDemo2());
//启动线程
thread.start();
}
}
Runnable 只是来修饰线程所执行的任务,它不是一个线程对象。想要启动Runnable对象,必须将它放到一个线程对象里。
3. 方法三:匿名内部类创建线程对象
public class CreatThreadDemo3 extends Thread{
public static void main(String[] args) {
//创建无参线程对象
new Thread(){
@Override
public void run() {
System.out.println("线程执行了...");
}
}.start();
//创建带线程任务的线程对象
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("线程执行了...");
}
}).start();
//创建带线程任务并且重写run方法的线程对象
new Thread(new Runnable() {
@Override
public void run() {
System.out.println("runnable run 线程执行了...");
}
}){
@Override
public void run() {
System.out.println("override run 线程执行了...");
}
}.start();
}
}
4. 方法四:创建带返回值的线程
public class CreatThreadDemo4 implements Callable {
public static void main(String[] args) throws ExecutionException, InterruptedException {
CreatThreadDemo4 demo4 = new CreatThreadDemo4();
FutureTask task = new FutureTask(demo4); //FutureTask最终实现的是runnable接口
Thread thread = new Thread(task);
thread.start();
System.out.println("我可以在这里做点别的业务逻辑...因为FutureTask是提前完成任务");
//拿出线程执行的返回值
Integer result = task.get();
System.out.println("线程中运算的结果为:"+result);
}
//重写Callable接口的call方法
@Override
public Object call() throws Exception {
int result = 1;
System.out.println("业务逻辑计算中...");
Thread.sleep(3000);
return result;
}
}
Callable接口介绍:
public interface Callable {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}
返回指定泛型的call方法。然后调用FutureTask对象的get方法得道call方法的返回值。
5. 方法五:定时器Timer
public class CreatThreadDemo5 {
public static void main(String[] args) {
Timer timer = new Timer();
timer.schedule(new TimerTask() {
@Override
public void run() {
System.out.println("定时器线程执行了...");
}
},0,1000); //延迟0,周期1s
}
}
6. 方法六:线程池创建线程
public class CreatThreadDemo6 {
public static void main(String[] args) {
//创建一个具有10个线程的线程池
ExecutorService threadPool = Executors.newFixedThreadPool(10);
long threadpoolUseTime = System.currentTimeMillis();
for (int i = 0;i<10;i++){
threadPool.execute(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName()+"线程执行了...");
}
});
}
long threadpoolUseTime1 = System.currentTimeMillis();
System.out.println("多线程用时"+(threadpoolUseTime1-threadpoolUseTime));
//销毁线程池
threadPool.shutdown();
threadpoolUseTime = System.currentTimeMillis();
}
}
7. 方法七:利用java8新特性 stream 实现并发
public class CreatThreadDemo7 {
public static void main(String[] args) {
List values = Arrays.asList(10,20,30,40);
//parallel 平行的,并行的
int result = values.parallelStream().mapToInt(p -> p*2).sum();
System.out.println(result);
//怎么证明它是并发处理呢
values.parallelStream().forEach(p-> System.out.println(p));
}
}
200
40
10
20
30
怎么证明它是并发处理呢,他们并不是按照顺序输出的 。
不对,答案见下面的代码:
@Override
public int hashCode() {
return 1;
}
两个对象equals为true,则hashCode也一定相同,对吗?
这块肯定是有争议的。面试的时候这样答:如果按照官方设计要求来打代码的话,hashcode一定相等。但是如果不按官方照设计要求、不重写hashcode方法,就会出现不相等的情况。
Executors提供了四种方法来创建线程池。
手写一个:
public static void main(String[] args) {
ExecutorService threadPool = Executors.newCachedThreadPool();
threadPool.execute(() -> {
for (int i = 0; i< 20;i++) {
System.out.println(Thread.currentThread().getName()+":"+i);
}
});
threadPool.shutdown();
}
线程池作用
不要认为它是四舍五入!不要认为它是四舍五入!不要认为它是四舍五入!
口诀:+0.5后向下取整。所以结果是-2。
留个题,Math.round(-2.6)结果和Math.round(2.6)结果
String s = new String(“hello”);可能创建两个对象也可能创建一个对象。如果常量池中有hello字符串常量的话,则仅仅在堆中创建一个对象。如果常量池中没有hello对象,则堆上和常量池都需要创建。
String s = “hello"这样创建的对象,JVM会直接检查字符串常量池是否已有"hello"字符串对象,如没有,就分配一个内存存放"hello”,如有了,则直接将字符串常量池中的地址返回给栈。(没有new,没有堆的操作)
hotspot在64位平台上,占8个字节,在32位平台上占4个字节。
(1<3)?"a":"b")+3+4
和(1<3)?"a":"b")+(3+4)
区别System.out.println(((1<3)?"a":"b")+3+4);
System.out.println(((1<3)?"a":"b")+(3+4));
控制台:
a34
a7
1. 什么情况下,加号会变成字符串连接符
依据上面的例子来思考。
更好的记忆方法:
基本类型中,没有boolean和浮点类型+长类型long.相应的包装类型也没有。
外加String和enum。
4&5``4^5``4&10>>1
各等于多少// 0100 & 0101 = 0100 = 4
System.out.println(4&5);
// 0100 ^ 0101 = 0001 = 1
System.out.println(4^5);
System.out.println(10>>1);
// 有疑问参考下面的运算符优先级
System.out.println(4&10>>1);
4
1
5
4
4|5
等于多少呢
答案:5
运算符优先级
为了网络进行传输或者持久化
什么是序列化
将对象的状态信息转换为可以存储或传输的形式的过程
除了实现Serializable接口还有什么序列化方式
标记-清除算法(老年代)
该算法分为“标记”和“清除”两个阶段: 首先标记出所有需要回收的对象(可达性分析), 在标记完成后统一清理掉所有被标记的对象.
该算法会有两个问题:
所以它一般用于"垃圾不太多的区域,比如老年代"。
复制算法(新生代)
该算法的核心是将可用内存按容量划分为大小相等的两块, 每次只用其中一块, 当这一块的内存用完, 就将还存活的对象(非垃圾)复制到另外一块上面, 然后把已使用过的内存空间一次清理掉.
优点:不用考虑碎片问题,方法简单高效。 缺点:内存浪费严重。
现代商用VM的新生代均采用复制算法, 但由于新生代中的98%的对象都是生存周期极短的, 因此并不需完全按照1∶1的比例划分新生代空间, 而是将新生代划分为一块较大的Eden区和两块较小的Survivor区(HotSpot默认Eden和Survivor的大小比例为8∶1), 每次只用Eden和其中一块Survivor. 当发生MinorGC时, 将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor上, 最后清理掉Eden和刚才用过的Survivor的空间. 当Survivor空间不够用(不足以保存尚存活的对象)时, 需要依赖老年代进行空间分配担保机制, 这部分内存直接进入老年代。
复制算法的空间分配担保: 在执行Minor GC前, VM会首先检查老年代是否有足够的空间存放新生代尚存活对象, 由于新生代使用复制收集算法, 为了提升内存利用率, 只使用了其中一个Survivor作为轮换备份, 因此当出现大量对象在Minor GC后仍然存活的情况时, 就需要老年代进行分配担保, 让Survivor无法容纳的对象直接进入老年代, 但前提是老年代需要有足够的空间容纳这些存活对象. 但存活对象的大小在实际完成GC前是无法明确知道的, 因此Minor GC前, VM会先首先检查老年代连续空间是否大于新生代对象总大小或历次晋升的平均大小, 如果条件成立, 则进行Minor GC, 否则进行Full GC(让老年代腾出更多空间). 然而取历次晋升的对象的平均大小也是有一定风险的, 如果某次Minor GC存活后的对象突增,远远高于平均值的话,依然可能导致担保失败(Handle Promotion Failure, 老年代也无法存放这些对象了), 此时就只好在失败后重新发起一次Full GC(让老年代腾出更多空间).
标记-整理算法(老年代)
标记清除算法会产生内存碎片问题, 而复制算法需要有额外的内存担保空间, 于是针对老年代的特点, 又有了标记整理算法. 标记整理算法的标记过程与标记清除算法相同, 但后续步骤不再对可回收对象直接清理, 而是让所有存活的对象都向一端移动,然后清理掉端边界以外的内存.
新生代:
老年代:
永久代:
MinGC:
FullGC:
在堆里面存放着Java世界中几乎所有的对象实例, 垃圾收集器在对堆进行回收前, 第一件事就是判断哪些对象已死(可回收).
引用计数法
在JDK1.2之前,使用的是引用计数器算法。 在对象中添加一个引用计数器,当有地方引用这个对象的时候,引用计数器的值就+1,当引用失效的时候,计数器的值就-1,当引用计数器被减为零的时候,标志着这个对象已经没有引用了,可以回收了!
问题:如果在A类中调用B类的方法,B类中调用A类的方法,这样当其他所有的引用都消失了之后,A和B还有一个相互的引用,也就是说两个对象的引用计数器各为1,而实际上这两个对象都已经没有额外的引用,已经是垃圾了。但是该算法并不会计算出该类型的垃圾。
可达性分析法
在主流商用语言(如Java、C#)的主流实现中, 都是通过可达性分析算法来判定对象是否存活的: 通过一系列的称为 GC Roots 的对象作为起点, 然后向下搜索; 搜索所走过的路径称为引用链/Reference Chain, 当一个对象到 GC Roots 没有任何引用链相连时, 即该对象不可达, 也就说明此对象是不可用的, 如下图:虽然E和F相互关联, 但它们到GC Roots是不可达的, 因此也会被判定为可回收的对象。
注: 即使在可达性分析算法中不可达的对象, VM也并不是马上对其回收, 因为要真正宣告一个对象死亡, 至少要经历两次标记过程: 第一次是在可达性分析后发现没有与GC Roots相连接的引用链, 第二次是GC对在F-Queue执行队列中的对象进行的小规模标记(对象需要覆盖finalize()方法且没被调用过).
1. Serial
Serial收集器是Hotspot运行在Client模式下的默认新生代收集器, 它在进行垃圾收集时,会暂停所有的工作进程,用一个线程去完成GC工作
特点:简单高效,适合jvm管理内存不大的情况(十兆到百兆)。
2. Parnew
ParNew收集器其实是Serial的多线程版本,回收策略完全一样,但是他们又有着不同。
我们说了Parnew是多线程gc收集,所以它配合多核心的cpu效果更好,如果是一个cpu,他俩效果就差不多。(可用-XX:ParallelGCThreads参数控制GC线程数)
3. Cms
CMS(Concurrent Mark Sweep)收集器是一款具有划时代意义的收集器, 一款真正意义上的并发收集器, 虽然现在已经有了理论意义上表现更好的G1收集器, 但现在主流互联网企业线上选用的仍是CMS(如Taobao),又称多并发低暂停的收集器。
由他的英文组成可以看出,它是基于标记-清除算法实现的。整个过程分4个步骤:
可以看到,初始标记、重新标记需要STW(stop the world 即:挂起用户线程)操作。因为最耗时的操作是并发标记和并发清除。所以总体上我们认为CMS的GC与用户线程是并发运行的。
优点:并发收集、低停顿
缺点:
4. G1
同优秀的CMS垃圾回收器一样,G1也是关注最小时延的垃圾回收器,也同样适合大尺寸堆内存的垃圾收集,官方也推荐使用G1来代替选择CMS。G1最大的特点是引入分区的思路,弱化分代的概念,合理利用垃圾收集各个周期的资源,解决了其他收集器甚至CMS的众多缺陷。
因为每个区都有E、S、O代,所以在G1中,不需要对整个Eden等代进行回收,而是寻找可回收对象比较多的区,然后进行回收(虽然也需要STW操作,但是花费的时间是很少的),保证高效率。
新生代收集
G1的新生代收集跟ParNew类似,如果存活时间超过某个阈值,就会被转移到S/O区。
年轻代内存由一组不连续的heap区组成, 这种方法使得可以动态调整各代区域的大小
老年代收集
分为以下几个阶段:
1. 拿到内存创建指令
当虚拟机遇到内存创建的指令的时候(new 类名),来到了方法区,找 根据new的参数在常量池中定位一个类的符号引用。
2. 检查符号引用
检查该符号引用有没有被加载、解析和初始化过,如果没有则执行类加载过程,否则直接准备为新的对象分配内存
3. 分配内存
虚拟机为对象分配内存(堆)分配内存分为指针碰撞和空闲列表两种方式;分配内存还要要保证并发安全,有两种方式。
3.1. 指针碰撞
所有的存储空间分为两部分,一部分是空闲,一部分是占用,需要分配空间的时候,只需要计算指针移动的长度即可。
3.2. 空闲列表
虚拟机维护了一个空闲列表,需要分配空间的时候去查该空闲列表进行分配并对空闲列表做更新。
可以看出,内存分配方式是由java堆是否规整决定的,java堆的规整是由垃圾回收机制来决定的
3.2.1 安全性问题的思考
假如分配内存策略是指针碰撞,如果在高并发情况下,多个对象需要分配内存,如果不做处理,肯定会出现线程安全问题,导致一些对象分配不到空间等。
3.3 线程同步策略
也就是每个线程都进行同步,防止出现线程安全。
3.4. 本地线程分配缓冲
也称TLAB(Thread Local Allocation Buffer),在堆中为每一个线程分配一小块独立的内存,这样以来就不存并发问题了,Java 层面与之对应的是 ThreadLocal 类的实现
4. 初始化
分配完内存后要对对象的头(Object Header)进行初始化,这新信息包括:该对象对应类的元数据、该对象的GC代、对象的哈希码。
抽象数据类型默认初始化为null,基本数据类型为0,布尔为false。。。
5. 调用对象的初始化方法
也就是执行构造方法。
对象创建起来之后,就会在虚拟机栈中维护一个本地变量表,用于存储基础类型和基础类型的值,引用类型与引用类型的值。 其中引用类型的值就是堆中对象地址。如何引用堆中地址有两种方式:
方法区、虚拟机栈、本地方法栈、堆、程序计数器。
这个要分版本来回答:
本地方法栈与虚拟机栈所发挥的作用很相似,他们的区别在于虚拟机栈为执行Java代码方法服务,而本地方法栈是为Native方法服务。
-Xms -Xmx
前者是堆的初始值,后者是堆能达到的最大值。
记录当前线程锁执行的字节码的行号。
Collection 是一个集合接口。它提供了对集合对象进行基本操作的通用接口方法。Collection接口在Java 类库中有很多具体的实现。Collection接口的意义是为各种具体的集合提供了最大化的统一操作方式。
Collections 是一个包装类。它包含有各种有关集合操作的静态多态方法。此类不能实例化,就像一个工具类,服务于Java的Collection框架。
Iterator接口提供了很多对集合元素进行迭代的方法。每一个集合类都包括了可以返回迭代器实例的迭代方法。迭代器可以在迭代过程中删除底层集合的元素,但是不可以直接调用集合的remove(Object obj)删除,可以通过迭代器的remove()方法删除
如果用的是for循环,就用集合自带的remove(),而这样就改变了集合的Size()循环的时候会出错。但如果把集合放入迭代器,既iterator迭代可以遍历并选择集合中的每个对象而不改变集合的结构,而把集合放入迭代器,用迭代器的remove()就不会出现问题
对List来说,你也可以通过listIterator()取得其迭代器,两种迭代器在有些时候是不能通用的,Iterator和ListIterator主要区别在以下方面:
并发的关键是你有处理多个任务的能力,不一定要同时。
所谓守护线程是指在程序运行的时候在后台提供一种通用服务的线程,比如垃圾回收线程就是一个很称职的守护者,并且这种线程并不属于程序中不可或缺的部分。因 此,当所有的非守护线程结束时,程序也就终止了,同时会杀死进程中的所有守护线程。反过来说,只要任何非守护线程还在运行,程序就不会终止。
守护线程和用户线程的没啥本质的区别:唯一的不同之处就在于虚拟机的离开:如果用户线程已经全部退出运行了,只剩下守护线程存在了,虚拟机也就退出了。 因为没有了被守护者,守护线程也就没有工作可做了,也就没有继续运行程序的必要了。
对于sleep()方法,我们首先要知道该方法是属于Thread类中的。而wait()方法,则是属于Object类中的。sleep()方法导致了程序暂停执行指定的时间,让出cpu该其他线程,但是他的监控状态依然保持者,当指定的时间到了又会自动恢复运行状态。在调用sleep()方法的过程中,线程不会释放对象锁。
而当调用wait()方法的时候,线程会放弃对象锁,进入等待此对象的等待锁定池,只有针对此对象调用notify()方法后本线程才进入对象锁定池准备获取对象锁进入运行状态。
notify 仅仅通知一个线程,并且我们不知道哪个线程会收到通知,然而 notifyAll 会通知所有等待中的线程。换言之,如果只有一个线程在等待一个信号灯,notify和notifyAll都会通知到这个线程。但如果多个线程在等待这个信号灯,那么notify只会通知到其中一个,而其它线程并不会收到任何通知,而notifyAll会唤醒所有等待中的线程。
线程池的5种状态:Running、ShutDown、Stop、Tidying、Terminated。