题意:给出n个点的坐标,求一个不与这n个点重合的整数点,使这n个点到这个点的曼哈顿距离和最小,输出最小距离和和满足条件的点的个数
假设我们满足条件的点为(x,y),ans表示最小曼哈顿距离和
易知 ans=sigma(xi-x) + sigma(yi-y) = sigma(xi) + sigma(yi) - n*(x+y) (1<=i<=n)
显然当x为xi序列中位数且y为yi序列中位数时,ans最小
但是题目要求(x,y)不与已知点重合,所以要讨论一下:
(一)n为奇数
①(x,y)不与已知点重合,则直接计算ans,方案数为1
②(x,y)为其中之一的已知点,则最终答案在(x+1,y)、(x-1,y)、(x,y+1)、(x,y-1) 四个点中(即它周围的四个点),每个判断一下并更新ans和方案数即可
(二)n为偶数
最小距离和即为当x和y分别为xi和yi的中位数时计算的ans,
找到从小到大排序后中间的两个数x1、x2、y1、y2,则方案数=(x2-x1+1)*(y2-y1+1)- 横坐标在[x1,x2]且纵坐标在[y1,y2]的已知点个数
注意:判断是否为已知点的时候,不能直接开flag[x,y],会MLE。
同时在n为偶数的时候,判断范围内的已知点个数不能枚举范围内的点一一判断,而是枚举已知点判断是否在范围内
type
rec=record
x,y:longint;
end;
const
way:array[1..4,1..2] of longint=((1,0),(-1,0),(0,1),(0,-1));
var
n,x1,x2,y1,y2 :longint;
ans,xx,yy,tt,tot:longint;
tx,ty :longint;
i,j,k :longint;
x,y :array[0..10010] of longint;
a :array[0..10010] of rec;
function find(xx,yy:longint):longint;
var
ans:longint;
i:longint;
begin
ans:=0;
for i:=1 to n do inc(ans,abs(x[i]-xx));
for i:=1 to n do inc(ans,abs(y[i]-yy));
exit(ans);
end;
function check(x,y:longint):boolean
;
var
i:longint;
begin
for i:=1 to n do
if (x=a[i].x) and (y=a[i].y) then exit(false);
exit(true);
end;
procedure sort1(l,r:longint);
var
i,j:longint;
xx,yy:longint;
begin
i:=l; j:=r; xx:=x[(l+r)>>1];
while (i<=j) do
begin
while x[i]xx do dec(j);
if (i<=j) then
begin
yy:=x[i]; x[i]:=x[j]; x[j]:=yy;
inc(i); dec(j);
end;
end;
if il then sort1(l,j);
end;
procedure sort2(l,r:longint);
var
i,j:longint;
xx,yy:longint;
begin
i:=l; j:=r; yy:=y[(l+r)>>1];
while (i<=j) do
begin
while y[i]yy do dec(j);
if (i<=j) then
begin
xx:=y[i]; y[i]:=y[j]; y[j]:=xx;
inc(i); dec(j);
end;
end;
if il then sort2(l,j);
end;
begin
read(n);
for i:=1 to n do
begin
read(x[i],y[i]);
a[i].x:=x[i]; a[i].y:=y[i];
end;
sort1(1,n);
sort2(1,n);
//
if (n and 1=1) then
begin
xx:=x[(n+1)>>1];
yy:=y[(n+1)>>1];
if check(xx,yy) then
begin
writeln(find(xx,yy),' ',1);exit;;
end else
begin
tot:=0; ans:=maxlongint;
for k:=1 to 4 do
begin
tx:=xx+way[k,1]; ty:=yy+way[k,2];
if (tx>=-10000) and (tx<=10000) and (ty>=-10000) and (ty<=10000) then
if check(tx,ty) then
begin
tt:=find(tx,ty);
if tt>1]; y1:=y[n>>1];
x2:=x[(n>>1)+1]; y2:=y[(n>>1)+1];
tot:=(x2-x1+1)*(y2-y1+1);
ans:=find((x1+x2) div 2,(y1+y2) div 2);
for i:=1 to n do
if (a[i].x>=x1) and (a[i].x<=x2) and (a[i].y<=y2) and (a[i].y>=y1) then dec(tot);
writeln(ans,' ',tot);
end;
end.
——by Eirlys