- MATLAB车牌识别系统
清风明月来几时
图像算法处理matlab开发语言
MATLAB车牌识别系统是一个基于MATLAB开发的用于识别和提取车牌信息的系统。该系统使用图像处理和机器学习算法来实现车牌的定位和字符识别。以下是一个基本的MATLAB车牌识别系统的工作流程:图像预处理:首先,将输入的图像进行预处理,包括灰度化、高斯平滑、边缘检测等操作,以提高后续的车牌定位和字符识别的准确性。车牌定位:在预处理后的图像中,使用形态学运算和边缘检测算法来寻找车牌的位置。这可以通过
- OpenCV-模板匹配多个目标
红米煮粥
opencv人工智能计算机视觉
文章目录一、基本概念二、基本步骤1.图像准备2.图像预处理3.执行模板匹配4.定位匹配区域5.处理多个匹配6.优化和验证三、代码实现1.图片读取2.图像预处理3.模板匹配4.绘制矩形框三、总结模型匹配(ModelMatching)是一个广泛应用的概念,其具体含义和应用领域会根据上下文的不同而有所变化。一、基本概念模型匹配是指通过比较待匹配的数据或对象与已有的模型之间的相似度或距离,来寻找最佳匹配的
- OpenCV-轮廓检测
红米煮粥
计算机视觉opencv图像处理
文章目录一、简介1.意义2.具体步骤二、代码实现三、总结一、简介1.意义在OpenCV中,轮廓检测是图像处理中一个非常重要的环节,它允许我们识别图像中的形状。这个过程通常涉及几个步骤:读取图像、转换为灰度图、应用阈值处理(或边缘检测)以获取二值图像、然后使用cv2.findContours()函数查找轮廓。2.具体步骤图像预处理:首先,对原始图像进行预处理,以便更容易地检测轮廓。这通常包括转换为灰
- 图像预处理之图像去重
江小皮不皮
计算机视觉opencv人工智能图像去重直方图
图像预处理之图像去重图像去重介绍方法基于直方图进行图像比对基于哈希法基于ORG进行图像特征提取基于机器学习批量去重图像去重介绍图像去重通常指的是完全相同的图像,即内容完全相同,颜色、尺寸、方向等都相同。但是在实际应用中,也有相似图像去重的需求,即内容大致相同,颜色、尺寸、方向等可能有所不同。因此,图像去重指的可以是完全一样的图像,也可以是相似的图像。图像去重的方法有以下几种:方法哈希法:通过计算图
- c++ +Opencv实现车牌自动识别
听忆.
人工智能计算机视觉
c+++Opencv实现车牌自动识别1.图像预处理2.车牌定位3.字符分割4.字符识别完整流程概述:边走、边悟迟早会好要用C++和OpenCV实现车牌自动识别,主要流程分为几个步骤:图像预处理:提高车牌区域的可见度,方便后续的车牌定位与字符识别。车牌定位:通过图像处理和特征提取,定位车牌在图像中的位置。字符分割:将车牌区域中的字符逐个分割出来。字符识别:利用机器学习算法或者OCR(光学字符识别)技
- 如何在3D无序抓取中应用深度学习算法?
道亦无名
人工智能3d深度学习算法
在3D无序抓取中,深度学习算法的应用极大地提升了系统的识别精度和效率。以下是深度学习算法在3D无序抓取中的具体应用方式:一、物体识别图像预处理:首先,通过3D相机获取的点云数据或深度图像需要进行预处理,包括去噪、滤波、分割等步骤,以提高后续处理的准确性。特征提取:利用深度学习算法(如卷积神经网络CNN)对预处理后的图像进行特征提取。这些特征可以是物体的形状、纹理、边缘等,有助于区分不同的物体。分类
- opencv学习:形态学操作和边缘检测算子
夜清寒风
opencv学习人工智能算法计算机视觉
cv2.morphologyEx()是OpenCV库中的一个函数,用于执行更复杂的形态学操作。这个函数可以执行开运算、闭运算、梯度运算、膨胀、腐蚀以及顶帽和黑帽转换等。这些操作通常用于图像预处理,如去除噪声、平滑边界、突出特征等。dst=cv2.morphologyEx(src,op,kernel[,dst[,anchor[,iterations[,borderType[,borderValue]
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- matlab车牌识别系统实现
MATLAB管家matlab674
图像处理MATLABmatlab开发语言
要实现基于Matlab的车牌识别系统,你可以按照以下步骤进行操作:数据集准备:收集包含不同类型车牌的图像数据集,包括正面、倾斜、模糊等不同情况的车牌图像。图像预处理:使用Matlab中的图像处理工具,对车牌图像进行预处理。可以包括降噪、图像增强、图像分割等操作。车牌定位:使用图像处理技术,对预处理后的图像进行车牌定位。可以使用边缘检测、投影法、颜色识别等方法。字符分割:对定位到的车牌图像进行字符分
- Python实现分水岭图像分割算法
闲人编程
图像处理python算法开发语言图像分割分水岭
目录Python实现分水岭图像分割算法的详细博客一、引言二、分水岭算法的原理三、Python实现分水岭算法四、算法步骤解析1.图像预处理2.计算梯度图像3.阈值分割4.距离变换与标记操作5.分水岭变换五、应用场景:细胞图像分割1.读取细胞图像2.应用高斯模糊去除噪声3.计算梯度图像4.阈值分割5.距离变换与标记操作6.分水岭变换六、分水岭算法的挑战与优化七、结论八、运行结果Python实现分水岭图
- Python车牌识别:从基础到高级的全方位指南
极客代码
玩转Python开发语言计算机视觉开发语言python人工智能
车牌识别是计算机视觉领域的一个重要应用,广泛应用于智能交通、停车场管理等领域。本文将从四个部分详细介绍Python车牌识别的基础知识、常用库、实战案例及注意事项,帮助读者从入门到精通Python车牌识别。第一部分:Python车牌识别基础1.1车牌识别简介车牌识别是指计算机系统通过分析车牌图像来识别车牌号码的过程。它主要包括以下几个步骤:图像预处理:对输入的图像进行必要的处理,如调整大小、裁剪、去
- pytorch | transforms.Compose()函数
DdddJMs__135
分享pytorch人工智能pythontransforms
transforms函数解析:self.norm=transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225]),])torchvision.transforms是pytorch中的图像预处理包。一般用Compose把多个步骤整合到一起:比如说:trans
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 计算机设计大赛 深度学习火车票识别系统
iuerfee
python
文章目录0前言1课题意义课题难点:2实现方法2.1图像预处理2.2字符分割2.3字符识别部分实现代码3实现效果4最后0前言优质竞赛项目系列,今天要分享的是图像识别火车票识别系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https://gitee.com/dancheng-senior/po
- 挑战杯 基于机器视觉的火车票识别系统
laafeer
python
文章目录0前言1课题意义课题难点:2实现方法2.1图像预处理2.2字符分割2.3字符识别部分实现代码3实现效果最后0前言优质竞赛项目系列,今天要分享的是基于机器视觉的火车票识别系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1课题意义目前火车乘务员在卧铺旅客在上车前为其提供将火车
- 图像预处理技术与算法
木子n1
算法嵌入式开发算法数码相机计算机视觉
图像预处理是计算机视觉和图像处理中非常关键的第一步,其目的是为了提高后续算法对原始图像的识别、分析和理解能力。以下是一些主要的图像预处理技术:1.图像增强:对比度调整:通过直方图均衡化(HistogramEqualization)等方法改善图像整体或局部的对比度。伽玛校正:改变图像的亮度特性,用于补偿显示器或其他硬件设备的非线性响应。锐化处理:如使用高通滤波器(如拉普拉斯算子、Sobel边缘检测算
- 第十九篇【传奇开心果系列】Python的OpenCV库技术点案例示例:文字识别与OCR
传奇开心果编程
Python库OpenCV技术点案例示例短博文pythonopencv人工智能计算机视觉
传奇开心果短博文系列系列短博文目录Python的OpenCV库技术点案例示例系列短博文目录前言一、OpenCV文字识别介绍二、图像预处理示例代码三、文字区域检测示例代码四、文字识别示例代码五、文字后处理示例代码六、OpenCV结合TesseractOCR库实现文字识别示例代码七、OpenCV结合OCRopus库文字识别示例代码八、OpenCV结合GoogleCloudVisionAPI文字识别示例
- 如何使用 Opencv 实现人脸检测和人脸识别?
学习不断
1.人脸检测CascadeClassifier加载Opencv自带的人脸检测haarcascade_frontalface_alt.xml分类器。图像预处理cvtColor(灰度化)equalizeHist(直方图均衡化)。使用detectMultiScale函数进行识别。使用rectangle函数绘制找到的目标矩形框。在原图像上ROI截取彩色的人脸保存。2.人脸识别FaceRecognizerF
- OpenCV-Python学习(九):图像滤波
星光下的胖子
目录:1.滤波的相关概念2.卷积操作3.平滑操作(低通滤波)均值滤波中值滤波高斯滤波双边滤波4.锐化操作(高通滤波)自定义锐化核USM锐化(UnsharpMask)5.梯度操作(高通滤波)Sobel算子Scharr算子Laplacian算子一、滤波的概念滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。图像滤波是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处
- 帮我写一份关于车牌识别的opencv、python报告
Waiyuet Fung
pythonopencv计算机视觉人工智能深度学习
好的,我会尽力帮你写一份关于车牌识别的报告。首先,车牌识别是一种常见的计算机视觉任务,它旨在使用计算机图像处理技术来识别车辆的车牌号码。这对于自动驾驶车辆、停车场管理、交通监控等应用非常重要。使用OpenCV和Python进行车牌识别的一般流程如下:图像预处理:首先,我们需要对输入的图像进行预处理,以确保图像质量较高。这可能包括对图像进行灰度化、去噪、二值化等操作。车牌定位:接下来,我们需要在图像
- 手把手带你基于Python+Django+百度云实现车牌识别
李威威wiwi
python开发语言django车牌识别停车管理
车牌识别系统(VehicleLicensePlateRecognition)是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常一个车牌识别系统主要包括以下这四个部分:车辆图像获取车牌定位车牌字符分割车牌字符识别看一下百科中对车牌识别技术的描述:车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目
- WSI 病理图像预处理(python)安装spams (失败)
H_SQ__
病理图像处理pythonanaconda
安装spams1、尝试方法12、尝试方法23、尝试方法34、尝试方法41、尝试方法1使用python对WSI(病理图像)进行预处理的时候,使用颜色标准化工具需要spams但是使用pipinstall安装很可能会出现失败。pipinstallspams失败;这时采用pythonsetup.pyinstall又报错了Nomodulenamed‘numpy.distutils._msvccompiler
- MogaNet实战:使用 MogaNet实现图像分类任务(二)
AI浩
图像分类人工智能人工智能深度学习计算机视觉
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:MogaNet实战:使用MogaNet实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解
- 科普:坐标系中几何变换及常见公式
9命怪猫
几何学计算机视觉几何学
几何变换”通常指的是对图像进行平移、旋转、缩放、翻转等操作,以改变图像的位置、大小和方向。这些几何变换常用于图像处理、计算机视觉和深度学习领域,用于数据增强、图像预处理、物体检测等任务。具体来说,几何变换包括以下几种主要操作:平移:将图像沿着水平和垂直方向移动一定的距离。旋转:围绕图像中心点或指定点进行旋转,改变图像的方向。缩放:按照指定的比例增大或缩小图像的尺寸。翻转:沿水平或垂直方向对图像进行
- Vim实战:使用 Vim实现图像分类任务(二)
静静AI学堂
图像分类实战vim分类深度学习
文章目录训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度,DP多卡,EMA定义训练和验证函数训练函数验证函数调用训练和验证方法运行以及结果查看测试完整的代码在上一篇文章中完成了前期的准备工作,见链接:Vim实战:使用Vim实现图像分类任务(一)前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实
- 基于OpenCV灰度图像转GCode的螺旋扫描实现
cheungxiongwei.com
⭐激光雕刻opencvGCODE3D打印激光雕刻GRBLCC++
基于OpenCV灰度图像转GCode的螺旋扫描实现引言激光雕刻简介OpenCV简介实现步骤1.导入必要的库2.读取灰度图像3.图像预处理4.生成GCode5.保存生成的GCode6.灰度图像螺旋扫描代码示例总结系列文章⭐深入理解G0和G1指令:C++中的实现与激光雕刻应用⭐基于二值化图像转GCode的单向扫描实现⭐基于二值化图像转GCode的双向扫描实现⭐基于二值化图像转GCode的斜向扫描实现⭐
- 基于OpenCV灰度图像转GCode的斜向扫描实现
cheungxiongwei.com
⭐激光雕刻opencvGRBL激光雕刻C++3D打印GCode
基于OpenCV灰度图像转GCode的斜向扫描实现基于OpenCV灰度图像转GCode的斜向扫描实现引言激光雕刻简介OpenCV简介实现步骤1.导入必要的库2.读取灰度图像3.图像预处理4.生成GCode5.保存生成的GCode6.灰度图像斜向扫描代码示例总结系列文章⭐深入理解G0和G1指令:C++中的实现与激光雕刻应用⭐基于二值化图像转GCode的单向扫描实现⭐基于二值化图像转GCode的双向扫
- 基于OpenCV灰度图像转GCode的双向扫描实现
cheungxiongwei.com
⭐激光雕刻opencv人工智能计算机视觉GCode激光雕刻3D打印C++
基于OpenCV灰度图像转GCode的双向扫描实现引言激光雕刻简介OpenCV简介实现步骤1.导入必要的库2.读取灰度图像3.图像预处理4.生成GCode1.简化版的双向扫描2.优化版的双向扫描5.保存生成的GCode6.灰度图像双向扫描代码示例总结系列文章⭐深入理解G0和G1指令:C++中的实现与激光雕刻应用⭐基于二值化图像转GCode的单向扫描实现⭐基于二值化图像转GCode的双向扫描实现⭐基
- [python]基于LSTR车道线实时检测onnx部署
FL1623863129
Pythonpython开发语言
【框架地址】https://github.com/liuruijin17/LSTR【LSTR算法介绍】LSTR车道线检测算法是一种用于识别和定位车道线的计算机视觉算法。它基于图像处理和机器学习的技术,通过对道路图像进行分析和处理,提取出车道线的位置和方向等信息。LSTR车道线检测算法的主要步骤包括图像预处理、边缘检测、车道线拟合和后处理等。在图像预处理阶段,算法会对输入的道路图像进行灰度化、降噪等
- OpenCV 8 - 模糊处理(均值滤波,高斯滤波,中值滤波,双边滤波)
江凡心
OpenCV学习笔记opencv均值算法人工智能
模糊处理原理:Blur是图像处理中最简单和常用的操作之一,使用该操作的原因为了给图像预处理时候减低噪声使用,Blur操作其背后是数学的卷积计算,通常这些卷积算子计算都是线性操作,所以又出线性虑波。假设有6x6的图像像素点矩阵。卷积过程:6x6上面是个3x3的窗口,从左向右,从上向下移动,黄色的每个像个像素点值之和取平均值赋给中心红色像素作为它卷积处理之后新的像素值。每次移动一个像素格。常用的进行模
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分