- JSON-LD 类型使用示例大全
本文是针对JSON-LD类型的使用示例及其简要介绍与说明。每个类型的示例展示了如何在JSON-LD中进行标注,并附带了简要说明,希望对你有所帮助。文章目录JSON-LD的主要核心类型Thing(事物)CreativeWork(创作作品)Event(事件)Intangible(非实体事物)Organization(组织)Person(个人)Place(地点)Product(产品)Action(行为)
- COMP1005 Computer Science
后端
COMP1005BWinter2025–“IntroductiontoComputerScienceI”COMP1005BAssignment#3Functions,Strings,FilesOverviewInthisassignment,youwilldemonstrateyourunderstandingof(inadditiontoprevioustopics):•Readingandwr
- 推荐开源项目:Tauri Plugin Store - 简单持久化的键值存储解决方案
谢忻含Norma
推荐开源项目:TauriPluginStore-简单持久化的键值存储解决方案tauri-plugin-store[READONLY]Thisrepositoryisamirror,forissuetrackinganddevelopmentheadto:https://github.com/tauri-apps/plugins-workspace项目地址:https://gitcode.com/g
- 基于opencv答题卡识别判卷
深度学习乐园
深度学习实战项目opencv人工智能计算机视觉
项目源码获取方式见文章末尾!回复暗号:13,免费获取600多个深度学习项目资料,快来加入社群一起学习吧。**《------往期经典推荐------》**项目名称1.【基于DDPG算法的股票量化交易】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LS
- 怎么编写提醒人结账的短信息_我如何在短短8个月的时间里从编写第一行代码到获得$ 226K的工作机会...
cumian9828
微软javatoaqtcreator人工智能
怎么编写提醒人结账的短信息IgotoffersfromGoogle,Lyft,Yelp,cloudunicornRubrik,IBMArtificialIntelligence,andJPMorganChase.Mystorymayhelpyouinyourjobsearch.我收到了Google,Lyft,Yelp,云独角兽Rubrik,IBMAI和JPMorganChase的报价。我的故事可能
- COMM1170 Organisational Resources
redamancy34
人工智能机器学习
ASSESSMENTGUIDECOMM1170OrganisationalResourcesTerm2,20242AssessmentSummaryAssessmentTaskWeightingDueDate*LearningOutcomesAssessment1:ReflectiveLearningPortfolio1Acollectionofartefactsandreflectivecomm
- STM32F103C8T6 驱动 0.96 寸 OLED (SSD1306, I2C 接口) 教程
与光同尘 大道至简
stm32嵌入式硬件单片机
本教程详细介绍如何使用STM32F103C8T6微控制器(常见为“蓝色飞线板”BluePill)通过I2C接口驱动0.96寸OLED显示屏(SSD1306控制器),使用STM32HAL库进行开发。内容从基础知识开始,一步步带领初学者完成OLED显示从初始化到显示文字、图形和图片的完整过程。1.基础知识OLED显示屏工作原理OLED(OrganicLight-EmittingDiode,有机发光二极
- Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR
这张生成的图像能检测吗
优质GAN模型训练自己的数据集超分辨率重建人工智能图像处理计算机视觉深度学习pytorch机器学习
简介简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。论文题目:LightweightSuper-ResolutionGenerativeAdversarialNetworkforSARImages(SAR图像的轻量级超分辨率生成对抗网络)期刊:Remote
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- java 庖丁解牛_“庖丁解牛” 分词器实现
weixin_39813009
java庖丁解牛
importjava.io.IOException;importjava.io.StringReader;importnet.paoding.analysis.analyzer.PaodingAnalyzer;importorg.apache.lucene.analysis.Analyzer;importorg.apache.lucene.analysis.Token;importorg.apac
- AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
EwanRenton
DLpaperAttnGANtext2imgCVPR2018DAMSM
《AttnGAN:Fine-GrainedTexttoImageGenerationwithAttentionalGenerativeAdversarialNetworks》是CVPR2018文本生成图像的文章,是StackGAN++的后续工作。Abstract在本文中作者提出了一个AttentionalGenerativeAd-versarialNetwork(AttnGAN),一种attent
- Python 错误 ValueError 解析,实际错误实例详解 (二)
迹忆客
Python错误大全与实战技巧python开发语言
文章目录前言Python中错误ValueError:NotEnoughValuestoUnpackPython中的ValueError是什么修复Python字典中ValueError:ValueError:notenoughvaluestounpack修复Python中ValueError:notenoughvaluestounpackPython中错误ValueError:SettinganAr
- 设计模式概述--七大设计原则
仰望星空@脚踏实地
设计模式
设计模式(DesignPattern)是前辈们对代码开发经验的总结,是解决特定问题的一系列套路。它不是语法规定,而是一套用来提高代码可复用性、可维护性、可读性、稳健性以及安全性的解决方案。1995年,GoF(GangofFour,四人组/四人帮)合作出版了《设计模式:可复用面向对象软件的基础》一书,共收录了23种设计模式,从此树立了软件设计模式领域的里程碑,人称「GoF设计模式」。面向对象设计原则
- llama_factory微调QWen1.5
Kun Li
大语言模型llamaqwen
GitHub-hiyouga/LLaMA-Factory:UnifyEfficientFine-Tuningof100+LLMsUnifyEfficientFine-Tuningof100+LLMs.Contributetohiyouga/LLaMA-FactorydevelopmentbycreatinganaccountonGitHub.https://github.com/hiyouga/L
- 机器学习之经典算法(十六) Birch算法
AI专家
机器之心修炼之路
(一)Birch算法简介:BIRCH(BalancedIterativeReducingandClusteringUsingHierarchies)全称是:利用层次方法的平衡迭代规约和聚类。BIRCH算法是1996年由TianZhang提出来的。Birch算法就是通过聚类特征(CF)形成一个聚类特征树,root层的CF个数就是聚类个数。整个算法实现共分为4个阶段:1.扫描所有数据,建立初始化的CF
- Android 高斯模糊
xiao芝麻
Android开发
packagecom.pingan.carowner.servicewindow.utils;importandroid.annotation.TargetApi;importandroid.content.Context;importandroid.graphics.Bitmap;importandroid.graphics.BitmapFactory;importandroid.os.Buil
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN解析
大模型_学习路线
深度学习cnntransformer人工智能AI大模型大模型LLM
今天探讨它们各自适用的场景,让您知道在何种情况下选择何种模型;同时分析它们的优势与局限,助您全面评估这些模型的性能。一、卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分
- Kubernetes容器编排的简单介绍
cumi6497
网络数据库dockerjavalinux
InthebeginningtherewastheFreeBSD-andlaterLinux-chrootjail.Chrootwasawaytobringanunmountedfilesystemtolifesoyoucouldexecutecommandsasthoughitwasactuallyrunningonitsownhost.ThencametheLinuxContainerspro
- 通俗易懂的一致性哈希原理
eternity_zzy
javajava
一致性哈希(Consistenthashing)算法是由MIT的Karger等人与1997年在一篇学术论文(《Consistenthashingandrandomtrees:distributedcachingprotocolsforrelievinghotspotsontheWorldWideWeb》)中提出来的,用于解决分布式缓存数据分布问题。在传统的哈希算法下,每条缓存数据落在那个节点是通过
- ZDZL首届吉祥杯季度赛双语说明&答疑
ZDZL
c++
ACGO版本本贴用于ZDZL团队首届吉祥杯季度赛赛事说明与答疑。ThispostisusedforexplainingandansweringquestionsaboutthefirstJixiangCupquarterlycompetitionoftheZDZLteam.我们很遗憾的通知您,因一些问题,竞赛时间可能发生变更,请您随时关注官方消息,很抱歉为您带来了不便。感谢您的理解与支持,您的支持
- 机器学习AI/ML/CV/NLP/GNN算法公式汇总Latex代码
rockingdingo
tensorflow大数据自然语言处理算法深度学习机器学习
图学习和LinkPrediction任务KnowledgeGraphLinkPredictionEquationsAndLatexCodehttp://www.deepnlp.org/blog/knowledge-graph-link-prediction小样本学习和零样本学习公式的Latex代Few-ShotLearningAndZero-ShotLearningEquationsLatexCo
- 程序员学商务英语之analogy、popularity、 eloquence、exaggerate、proposition
李匠2024
英文
1448-Here'sananalogy.-打个比方A:Here'sananalogy,learningaforeignlanguageislikelearninghowtoplaythepiano,whichrequirestremendouspractice.It'sreallyatime-consumingandpainstakingjob.打个比方,学习一门外语就像学习弹钢琴,需要大量的练
- TensorFlow 架构
weixin_zdpau
AItensorflow人工智能神经网络
https://www.tensorflow.org/guide/extend/architecture一WedesignedTensorFlowforlarge-scaledistributedtrainingandinference,butitisalsoflexibleenoughtosupportexperimentationwithnewmachinelearningmodelsands
- tomcat jndi + spring配置
cyong888
java数据库tomcatspringexceptionbean数据库jar
tomcatjndi+spring配置一、简介JNDI:JavaNamingandDirectoryInterface(JNDI)首先关于jndi的配置网上资料很多,但大多都不是我想要的,原因很简单,改的配置文件太多,耦合度还是太高。据网上资料所言,需要更改的配置文件有三:tomcat的server.xml,工程下的WEB-INF/web.xml和spring的数据源bean的配置。虽然只有三个,
- AIGC生图技术剖析:文本生成图像的核心算法与创新应用
喵手
零基础学JavaAIGC算法
全文目录:开篇语前言AIGC技术核心:从文本到图像的转换1.文本编码与语义提取2.生成对抗网络(GAN)3.变分自编码器(VAE)4.融合模型:CLIP+VQ-GAN核心算法示例:使用Python生成图像使用OpenAI的DALL-E生成图像解释AIGC在多个领域的应用前景1.艺术创作2.广告设计3.虚拟现实(VR)与增强现实(AR)4.游戏开发总结:AIGC生图技术的未来文末开篇语哈喽,各位小伙
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 【Python大语言模型系列】如何在LangChain中使用ReAct构建AI Agent(案例+源码)
脱泥不tony
人工智能python语言模型自然语言处理AI大模型LangChainAgent
一、引言========当前,在各个大厂纷纷卷LLM的情况下,各自都借助自己的LLM推出了自己的AIAgent,比如字节的Coze,百度的千帆等,还有开源的Dify。你是否想知道其中的原理?是否想过自己如何实现一套AIAgent?当然,借助LangChain就可以。ReAct(ReasoningandAction)是一个框架,其核心思想,就是通过思维链的方式,引导模型将复杂问题进行拆分,一步一步地
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
程序猿阿伟
生成对抗网络人工智能机器学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度揭秘:生成对抗网络如何重塑遥感图像分析精度》
人工智能深度学习
在当今数字化时代,遥感图像作为获取地球表面信息的重要数据源,广泛应用于城市规划、农业监测、环境评估等诸多领域。然而,如何从海量的遥感数据中提取高精度的信息,一直是学术界和工业界共同面临的挑战。生成对抗网络(GAN)的出现,为提升人工智能在遥感图像分析中的精度开辟了全新的路径。生成对抗网络:技术基石剖析生成对抗网络由生成器(Generator)和判别器(Discriminator)组成,二者通过对抗
- 《深度剖析:生成对抗网络中生成器与判别器的高效协作之道》
程序猿阿伟
生成对抗网络人工智能机器学习
在人工智能的前沿领域,生成对抗网络(GAN)以其独特的对抗学习机制,为数据生成和处理带来了革命性的变革。生成器与判别器作为GAN的核心组件,它们之间的协作效率直接决定了GAN在图像生成、数据增强、风格迁移等众多应用中的表现。深入探究二者如何实现更高效的协作,不仅是优化GAN性能的关键,也为解锁人工智能更多创新应用场景提供了可能。生成器与判别器:GAN的核心架构解析生成器(Generator)的使命
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =