plt.boxplot 箱线图

箱线图 又称 ‘ 盒 图 ’
在1977年由美国的统计学家约翰·图基(John Tukey)发明的。 它由五个数值点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max)。 也可以往盒图里面加入平均值(mean)。下四分位数、中位数、上四分位数组成一个“带有隔间的盒子”。上四分位数到最大值之间建立一条延伸线,这个延伸线成为“胡须(whisker)”。

plt.boxplot 箱线图_第1张图片

plt.boxplot(x, notch=None, sym=None, vert=None,   
             whis=None, positions=None, widths=None,   
             patch_artist=None, meanline=None, showmeans=None,   
             showcaps=None, showbox=None, showfliers=None,   
             boxprops=None, labels=None, flierprops=None,   
             medianprops=None, meanprops=None,   
             capprops=None, whiskerprops=None)  

x:指定要绘制箱线图的数据;
notch:是否是凹口的形式展现箱线图,默认非凹口;
sym:指定异常点的形状,默认为+号显示;
vert:是否需要将箱线图垂直摆放,默认垂直摆放;
whis:指定上下须与上下四分位的距离,默认为1.5倍的四分位差;
positions:指定箱线图的位置,默认为[0,1,2…];
widths:指定箱线图的宽度,默认为0.5;
patch_artist:是否填充箱体的颜色;
meanline:是否用线的形式表示均值,默认用点来表示;
showmeans:是否显示均值,默认不显示;
showcaps:是否显示箱线图顶端和末端的两条线,默认显示;
showbox:是否显示箱线图的箱体,默认显示;
showfliers:是否显示异常值,默认显示;
boxprops:设置箱体的属性,如边框色,填充色等;
labels:为箱线图添加标签,类似于图例的作用;
filerprops:设置异常值的属性,如异常点的形状、大小、填充色等;
medianprops:设置中位数的属性,如线的类型、粗细等;
meanprops:设置均值的属性,如点的大小、颜色等;
capprops:设置箱线图顶端和末端线条的属性,如颜色、粗细等;
whiskerprops:设置须的属性,如颜色、粗细、线的类型等;

  由于现实数据中总是存在各式各样地“脏数据”,也成为“离群点”,于是为了不因这些少数的离群数据导致整体特征的偏移,将这些离群点单独汇出,而盒图中的胡须的两级修改成最小观测值与最大观测值。这里有个经验,就是最大(最小)观测值设置为与四分位数值间距离为1.5个IQR(中间四分位数极差)。即:

IQR = Q3-Q1,即上四分位数与下四分位数之间的差,也就是盒子的长度。

最小观测值为min = Q1 - 1.5*IQR,如果存在离群点小于最小观测值,则胡须下限为最小观测值,离群点单独以点汇出。如果没有比最小观测值小的数,则胡须下限为最小值。
最大观测值为max = Q3 -1.5*IQR,如果存在离群点大于最大观测值,则胡须上限为最大观测值,离群点单独以点汇出。如果没有比最大观测值大的数,则胡须上限为最大值。

通过盒图,在分析数据的时候,盒图能够有效地帮助我们识别数据的特征:
直观地识别数据集中的异常值(查看离群点)。
判断数据集的数据离散程度和偏向(观察盒子的长度,上下隔间的形状,以及胡须的长度)。

你可能感兴趣的:(matplotlib)