- 探索深度学习中的图像超分辨率:SMFANet 模型解析
RockLiu@805
深度学习人工智能
探索深度学习中的图像超分辨率:SMFANet模型解析在现代计算机视觉中,图像超分辨率(Super-Resolution)是一个备受关注的研究领域。它的目标是将低分辨率的图像恢复为高分辨率的图像,同时保留或增强细节信息。近年来,基于深度学习的方法在这方面的研究取得了显著进展。今天,我们将一起探索一个轻量级、高效的超分辨率模型——SMFANet,并深入分析其实现细节。一、超分辨率技术的意义与挑战图像超
- 人工智能混合编程实践:Python ONNX FP16加速进行图像超分重建
FriendshipT
人工智能混合编程实践人工智能python开发语言超分辨率重建FP16onnx
人工智能混合编程实践:PythonONNXFP16加速进行图像超分重建前言相关介绍Python简介ONNX简介图像超分辨率重建简介应用场景前提条件实验环境项目结构使用PythonONNXFP16加速进行图像超分重建sr_py_infer_fp16.py参考文献前言由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、
- 19 - SAFM模块
Leo Chaw
深度学习算法实现深度学习计算机视觉机器学习
论文《Spatially-AdaptiveFeatureModulationforEfficientImageSuper-Resolution》1、作用这篇论文通过提出空间自适应特征调制(Spatially-AdaptiveFeatureModulation,SAFM)机制,旨在解决图像超分辨率(Super-Resolution,SR)的高效设计问题。在图像超分辨率重建性能上取得了显著的成果,这些
- Real-ESRGAN-GUI 安装与配置完全指南
Real-ESRGAN-GUI安装与配置完全指南Real-ESRGAN-GUILovelyReal-ESRGAN/Real-CUGANGUIWrapper项目地址:https://gitcode.com/gh_mirrors/re/Real-ESRGAN-GUI项目基础介绍Real-ESRGAN-GUI是一个基于Real-ESRGAN的图像超分辨率增强工具的简易图形用户界面。该界面旨在让用户轻松地
- 轻量化图像超分新范式:残差注意力网络重构超分计算逻辑
CodePatentMaster
网络重构
轻量化图像超分新范式:残差注意力网络重构超分计算逻辑一、技术原理深度剖析痛点定位当前图像超分辨率技术面临三重挑战:显存黑洞:传统残差网络堆叠导致参数量指数级增长,移动端部署时显存占用超过500MB细节丢失:常规通道注意力机制在压缩过程中丢失高频纹理信息,PSNR指标下降超过1.2dB推理延迟:典型4倍超分模型在移动端GPU的推理时间超过300ms,难以满足实时视频处理需求实现路径专利CN20241
- 非盲图像超分辨率与盲图像超分辨率技术2025.6.5
mozun2020
IP1:图像处理计算机视觉人工智能超分辨率重建图像处理信号处理
本文详细介绍非盲图像超分辨率与盲图像超分辨率技术。主要内容如下:基本概念与问题定义:介绍图像超分辨率的基本概念,解释盲与非盲超分辨率的核心区别,并使用表格对比两种技术。非盲图像超分辨率:原理与方法:详细说明非盲超分辨率的技术原理,列举典型方法,并介绍电力设备红外图像处理等应用场景。盲图像超分辨率:挑战与技术路线:分析盲超分辨率面临的三大挑战,系统分类技术方法(显式/隐式建模),并介绍Real-ES
- 【Block总结】TAB,令牌聚合块|融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用
AI浩
Block总结人工智能计算机视觉
论文信息本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。论文连接:https://arxiv.org/pdf/2503.06896Github代码链接:https://github.
- 【PyTorch项目实战】超分RCAN:使用非常深的残差通道注意力网络实现图像超分辨率 —— (自研)解决了RCAN恢复图像的模糊性
胖墩会武术
深度学习PyTorch项目实战python残差网络resnet超分辨率重建RCAN
文章目录一、论文详解1.1、项目背景1.2、研究现状1.3、论文核心1.4、网络模型(RCAN,ResidualChannelAttentionNetworks)1.4.1、残差中的残差(RIR,ResidualInResidual):由G个残差组(RG)和1条长跳跃连接(LSC)组成;每个RG由B个残差通道注意力块(RCAB)和1条短跳跃连接(SSC)组成;每个RCAB由1个通道注意力(CA)和
- python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。
OICQQ67658008
python超分辨率重建算法
python语言中如何构建图像超分辨率重建系统,并支持SRResNet和SRGAN算法,且使用PyQt5进行界面设计。文章目录1.安装依赖库2.创建主窗口`main_window.py`3.实现SRResNet逻辑`srresnet.py`4.实现SRGAN逻辑`srgan.py`1.安装依赖库2.创建登录界面`login_window.py`3.创建主窗口`main_window.py`4.运行
- 深度学习中的Pixel Shuffle和Pixel Unshuffle:图像超分辨率的秘密武器
程序员非鱼
深度学习基础知识深度学习人工智能pytorchPixelShufflepython
在深度学习的计算机视觉任务中,提升图像分辨率和压缩特征图是重要需求。PixelShuffle和PixelUnshuffle是在超分辨率、图像生成等任务中常用的操作,能够通过转换空间维度和通道维度来优化图像特征表示。本篇文章将深入介绍这两种操作的原理,并结合PyTorch实现可视化展示,希望能帮助大家更好地理解他们的用途与效果。为什么需要PixelShuffle和PixelUnshufflePixe
- TPAMI 2025 | 探索 Transformer 中受频率启发的优化方法用于高效单图像超分辨率
小白学视觉
论文解读IEEETPAMItransformer深度学习人工智能IEEETPAMI论文解读
论文信息题目:ExploringFrequency-InspiredOptimizationinTransformerforEfficientSingleImageSuper-Resolution探索Transformer中受频率启发的优化方法用于高效单图像超分辨率作者:AoLi,LeZhang,YunLiu,CeZhu源码:https://github.com/AVC2-UESTC/Freque
- Pytorch实现之对称卷积神经网络结构实现超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorchcnn人工智能生成对抗网络神经网络深度学习
简介简介:针对传统的超分辨率重建技术所重建的图像过于光滑且缺乏细节的问题,作者提出了一种改进的生成对抗图像超分辨率网络。该改进方法基于深度神经网络,其生成模型包含多层卷积模块和多层反卷积模块,其中在感知损失基础上增加了跳层连接和损失函数。该判别模型由多层神经网络组成,其损失函数基于生成式对抗网络生成的判别模型损失函数。论文题目:ImageSuper-resolutionReconstruction
- 基于生成对抗网络(GAN)的图像超分辨率实战:从SRGAN到ESRGAN
Evaporator Core
#深度学习强化学习生成模型生成对抗网络人工智能神经网络
图像超分辨率(ImageSuper-Resolution)是一种通过算法将低分辨率图像转换为高分辨率图像的技术,广泛应用于医学影像、卫星图像和视频增强等领域。生成对抗网络(GAN)是图像超分辨率的经典方法,而增强型超分辨率生成对抗网络(ESRGAN)则通过引入残差网络和感知损失进一步提升了图像质量。本文将通过一个完整的实战案例,展示如何使用SRGAN和ESRGAN进行图像超分辨率,并提供详细的代码
- HiPixel开源AI驱动的图像超分辨率的原生macOS 应用程序,使用 SwiftUI 构建并利用 Upscayl 强大的 AI 模型
2301_78755287
swiftuiiosswift人工智能开源图像处理
一、软件介绍文末提供程序和源码下载HiPixel是一个开源程序基于SwiftUI构建的macOS原生应用程序,用于AI驱动的图像超分辨率,并利用Upscayl的强大AI模型。二、软件特征具有SwiftUI界面的原生macOS应用程序使用AI模型进行高质量图像放大通过GPU加速实现快速处理支持各种图像格式用于自动处理新添加图像的文件夹监控现代、直观的用户界面三、为什么选择HiPixel?虽然Upsc
- NTIRE比赛:技术前沿、国内企业表现与计算机视觉未来展望
AndrewHZ
深度学习新浪潮计算机视觉人工智能深度学习调研报告算法NTIRE画质算法
一、NTIRE比赛概述:图像恢复与增强领域的全球竞技场1.1NTIRE的定位与历史NTIRE(NewTrendsinImageRestorationandEnhancement)是计算机视觉领域最具影响力的国际赛事之一,聚焦于图像恢复与增强技术的前沿探索。自2017年首次举办以来,NTIRE每年与计算机视觉顶会CVPR联合召开,成为学术界与工业界技术实力的重要展示平台。其竞赛内容涵盖图像超分辨率、
- PSPNet在图像超分辨率中的应用
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
PSPNet在图像超分辨率中的应用1.背景介绍图像超分辨率(ImageSuper-Resolution,ISR)是计算机视觉领域的一个重要研究方向,旨在从低分辨率图像中重建高分辨率图像。传统的ISR方法主要基于插值算法,如双线性插值、双三次插值等,但这些方法往往无法恢复图像的高频细节信息。近年来,随着深度学习的发展,基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)的
- Pytorch实现之基于相对平均生成对抗网络的人脸图像超分辨率
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习pythonpytorch
简介简介:改进SRGAN,并使用相对平均生成对抗网络的人脸图像超分辨率训练自己的数据集论文题目:FaceImageSuper-resolutionBasedOnRelativeAverageGenerativeAdversarialNetworks(基于相对平均生成对抗网络的人脸图像超分辨率)会议:20212ndAsiaSymposiumonSignalProcessing(ASSP)摘要:人脸图
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- 使用opencv实现深度学习的图片与视频的超分辨率
人工智能研究所
人工智能之计算机视觉opencv深度学习视频超分辨率图片超分辨率
图片超分辨率什么是视频与图片的超分辨率,总结一下便是给一张分辨率比较低的图片,进行超分辨率的处理后,生成比较清晰的高分辨率的图片,上图图片完美解释了超分辨率的过程,由于不同的算法不同,处理的结果也不相同,本期我们介绍一下如何进行图片的超分辨率的处理。·EDSR模型图像超分辨率EDSR:EnhancedDeepResidualNetworksforSingleImageSuper-Resolutio
- 【YOLOv10改进[注意力]】引入2024.9的LIA(local importance-based attention,基于局部重要性的注意力) | 图像超分辨率任务
Jackilina_Stone
【魔改】YOLOv10YOLO目标检测人工智能计算机视觉python
本文将进行在YOLOv10中引入2024.9.20的LIA模块魔改v10,文中含全部代码、详细修改方式。助您轻松理解改进的方法。目录一LIA二安装YOLO三魔改YOLOv101整体修改①添加python文件
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- stable diffusion和GAN网络的区别,优点缺点是什么
爱好很多的算法工程师
SD大模型AIGC笔记
稳定扩散(stablediffusion)和生成对抗网络(GAN)是两种不同的深度学习方法。稳定扩散是一种无监督学习方法,用于图像超分辨率重建。它基于扩散过程模型,通过在不同的时间步骤中对图像进行重建来增加分辨率。该方法能够有效地增加图像的细节,并产生更高质量的图像。其优点包括:无监督学习:稳定扩散不需要使用任何带标签的训练数据,因此可以用于无监督任务。高分辨率重建:稳定扩散能够通过迭代过程逐渐增
- (condition instance batchnorm)A LEARNED REPRESENTATION FOR ARTISTIC STYLE
水球喵
分享一个不错的对batchnorm的解释https://blog.csdn.net/aichipmunk/article/details/54234646.作者提到:BatchNorm会忽略图像像素(或者特征)之间的绝对差异(因为均值归零,方差归一),instancenorm也是一样的,他们只考虑相对差异,所以在不需要绝对差异的任务中(比如分类、风格),有锦上添花的效果。而对于图像超分辨率这种需要
- 【深度学习】实验7实验结果,图像超分辨
X.AI666
深度学习深度学习人工智能
代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,接实验技术指导1对1实验要求布置请看http://t.csdnimg.cn/jCsv6Model实现说明代码实现了一个基于生成对抗网络(SRGAN)的图像超分辨率模型。总体来说,SRGAN由两个主要组件组成:生成器(Generator)和判别器(Discriminator),它们相互对抗并共
- 超分之SRGAN
深度学习炼丹师-CXD
超分SR计算机视觉人工智能深度学习超分辨率重建论文笔记
Photo-RealisticSingleImageSuper-ResolutionUsingaGenerativeAdversarialNetwork使用生成对抗网络的逼真单图像超分辨率一作:ChristianLedig是Twitter2017年的一篇论文。超分之SRGAN代码实现文章目录0.摘要1.引言1.1相关工作1.1.1介绍了SR技术的发展历程1.1.2介绍了SR技术中卷积神经网络的设计
- TecoGAN视频超分辨率算法
AI算法-图哥
--图像画质增强计算机视觉图像处理超分辨率人工智能深度学习
1.摘要对抗训练在单图像超分辨率任务中非常成功,因为它可以获得逼真、高度细致的输出结果。因此,当前最优的视频超分辨率方法仍然支持较简单的范数(如L2)作为对抗损失函数。直接向量范数作损失函数求平均的本质可以轻松带来时间流畅度和连贯度,但生成图像缺乏空间细节。该研究提出了一种用于视频超分辨率的对抗训练方法,可以使分辨率具备时间连贯度,同时不会损失空间细节。该研究聚焦于新型损失的形成,并基于已构建的生
- 【2023 CCF 大数据与计算智能大赛】基于TPU平台实现超分辨率重建模型部署 基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案
算能开发者社区
大数据超分辨率重建人工智能
2023CCF大数据与计算智能大赛《基于TPU平台实现超分辨率重建模型部署》作品名:基于预训练ESPCN的轻量化图像超分辨率模型TPU部署方案队伍名:Absofastlutely蒋松儒计算机科学与技术系硕士南京大学中国-江苏
[email protected]吕欢欢计算机科学与技术系博士南京大学中国-江苏
[email protected]张凯铭物理学系本科四川大学中国-四川283574
- CVPR 2021 论文大盘点-超分辨率篇
深度学习技术前沿
算法大数据计算机视觉神经网络机器学习
作者|CV君来源|OpenCV中文网编辑|极市平台【导读】本文总结超分辨率相关论文,包括图像、视频、盲超分辨率、无参考型图像超分辨率以及基于参考的超分辨率等。共计32篇。其中大量的论文在研究超分辨率算法的加速和训练、真实世界超分辨率问题,说明学界算法在加速向工业界产品转化。值得大家关注~大家可以在https://openaccess.thecvf.com/CVPR2021?day=all按照题目下
- 计算机视觉基础(12)——图像恢复
猪猪的超超
计算机视觉基础计算机视觉人工智能图像处理图像恢复
前言我们将学习图像恢复相关知识。主要有图像恢复的定义、评价标准和实现图像恢复的方法。图像恢复任务包括图像去噪、去模糊、图像超分辨率、图像修复等;评价标准有峰值信噪比和结构相似性;图像超分辨的方法有传统方法和基于深度学习的方法:传统方法包括了基于插值的方法和基于字典学习,而深度学习方法有很多,包括SRCNN,VDSR等。一、图像恢复的定义1.1图像恢复的意义由于环境的⼲扰(速度过快、天⽓原因、识别噪
- 【图像重构】基于OMP算法实现图像重构附matlab代码
matlab科研助手
图像处理机器学习算法人工智能
1内容介绍为了提高可见光图像的识别和检测能力,提出基于OMP算法的可见光图像超分辨率重构方法.建立可见光图像的视觉信息采集模型,采用空间锚点邻域特征匹配方法进行的可见光图像超分辨特征分解,提取可见光图像边缘轮廓特征量,结合残差特征估计高分辨率图像特征融合和优化分割,建立可见光图像的超分辨率重建特征分布集,采用边缘信息空间区域融合方法进行可见光图像的像素信息融合和优化特征重组,提取可见光图像的模糊度
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方