- 番茄西红柿叶子病害分类数据集12882张11类别
futureflsl
数据集分类数据挖掘人工智能
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):12882分类类别数:11类别名称:["Bacterial_Spot_Bacteria","Early_Blight_Fungus","Healthy","Late_Blight_Water_Mold","Leaf_Mold_Fungus","Powdery
- 遥感影像的切片处理
sand&wich
计算机视觉python图像处理
在遥感影像分析中,经常需要将大尺寸的影像切分成小片段,以便于进行详细的分析和处理。这种方法特别适用于机器学习和图像处理任务,如对象检测、图像分类等。以下是如何使用Python和OpenCV库来实现这一过程,同时确保每个影像片段保留正确的地理信息。准备环境首先,确保安装了必要的Python库,包括numpy、opencv-python和xml.etree.ElementTree。这些库将用于图像处理
- Python(PyTorch)和MATLAB及Rust和C++结构相似度指数测量导图
亚图跨际
Python交叉知识算法量化检查图像压缩质量低分辨率多光谱峰值信噪比端到端优化图像压缩手术机器人三维实景实时可微分渲染重建三维可视化
要点量化检查图像压缩质量低分辨率多光谱和高分辨率图像实现超分辨率分析图像质量图像索引/多尺度结构相似度指数和光谱角映射器及视觉信息保真度多种指标峰值信噪比和结构相似度指数测量结构相似性图像分类PNG和JPEG图像相似性近似算法图像压缩,视频压缩、端到端优化图像压缩、神经图像压缩、GPU变速图像压缩手术机器人深度估计算法重建三维可视化推理图像超分辨率算法模型三维实景实时可微分渲染算法MATLAB结构
- CV、NLP、数据控掘推荐、量化
海的那边-
AI算法自然语言处理人工智能
下面是对CV(计算机视觉)、NLP(自然语言处理)、数据挖掘推荐和量化的简要概述及其应用领域的介绍:1.CV(计算机视觉,ComputerVision)定义:计算机视觉是一门让计算机能够从图像或视频中提取有用信息,并做出决策的学科。它通过模拟人类的视觉系统来识别、处理和理解视觉信息。主要任务:图像分类:识别图像中的物体并分类,比如猫、狗、车等。目标检测:在图像或视频中定位并识别多个对象,如人脸检测
- 基于Pytorch框架的CIFAR-10图像分类任务(附带完整代码)
难得北窗高卧
pytorch人工智能python深度学习
本文主要实现在pytorch框架下,训练CIFAR数据集,通过观察训练和验证的误差、准确率图像来进一步改善。保存最好的模型。测试集打印整体准确率和每一类别的准确率,并生成混淆矩阵,将其中每一个错误的图片并保存下来。语言:python实现方式:pytorch框架,CPU关键词:CIFAR-10数据集、Dataset和Dataloader、SummaryWriter画图、网络模型搭建、混淆矩阵、统计所
- 验证resneXt,densenet,mobilenet和SENet的特色结构
dfj77477
人工智能python
简介图像分类对网络结构的要求,一个是精度,另一个是速度。这两个需求推动了网络结构的发展。resneXt:分组卷积,降低了网络参数个数。densenet:密集的跳连接。mobilenet:标准卷积分解成深度卷积和逐点卷积,即深度分离卷积。SENet:注意力机制。简单起见,使用了[1]的代码,注释掉layer4,作为基本框架resnet14。然后改变局部结构,验证分类效果。实验结果GPU:gtx107
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 【Python】成功解决TypeError: list indices must be integers or slices, not str
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决TypeError:listindicesmustbeintegersorslices,notstr欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆
- Transformer+目标检测,这一篇入门就够了
BIT可达鸭
▶深度学习-计算机视觉transformer深度学习目标检测计算机视觉自然语言处理
VisionTransformerforObjectDetection本文作者:Encoder-Decoder简介:Encoder-Decoder的缺陷:Attention机制:Self-Attention机制:Multi-HeadAttention:Transformer结构:图像分类之ViT:图像分类之PyramidViT:目标检测之DETR:目标检测之DeformableDETR:本文作者:
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- [opencv]DNN图像分类
FL1623863129
opencvopencvdnn分类
OpenCV是一个计算机视觉开源库,提供了处理图像和视频的能力。OpenCV的影响力非常大,有超过47000的社区用户,以及超过1400万次的下载量。其应用领域横跨图像处理、交互式艺术、视频监督、地图拼接和高级机器人等。作为一个有十几年历史的开源项目,OpenCV拥有广大的用户群体和开发者群体。在数字的世界中,一幅图像由多个点(像素)组成。图像处理就是对其中一个像素或者一个区域内的像素(块)进行处
- 快速使用transformers的pipeline实现各种深度学习任务
E寻数据
huggingface计算机视觉nlp深度学习人工智能pythonpipelinetransformers
目录引言安装情感分析文本生成文本摘要图片分类实例分割目标检测音频分类自动语音识别视觉问答文档问题回答图文描述引言在这篇中文博客中,我们将深入探讨使用transformers库中的pipeline()函数,它为预训练模型提供了一个简单且快速的推理方法。pipeline()函数支持多种任务,包括文本分类、文本生成、摘要生成、图像分类、图像分割、对象检测、音频分类、自动语音识别、视觉问题回答、文档问题回
- 阿尔兹海默症-图像分类数据集
数据集_深度学习
分类数据挖掘人工智能python机器学习算法
阿尔兹海默症-图像分类数据集数据集:链接:https://pan.baidu.com/s/1gSUT74XrnHmg2Z11oZNd6A?pwd=wphh提取码:wphh数据集信息介绍:文件夹健康中的图片数量:8000文件夹早期轻度认知障碍中的图片数量:10000文件夹阿尔兹海默症中的图片数量:8000所有子文件夹中的图片总数量:26000阿尔兹海默症-图像分类数据集摘要阿尔兹海默症(Alzhei
- 基于深度学习的自适应架构
SEU-WYL
深度学习dnn深度学习架构人工智能
基于深度学习的自适应架构是一种能够动态调整自身结构和参数的神经网络体系,以更好地适应不同的任务和环境需求。这类架构旨在提高模型的灵活性、效率和泛化能力,特别是在面对资源受限或任务多样化的情况下。以下是对该主题的详细介绍:1.背景与动机任务多样性:在现实世界中,模型可能需要处理各种不同的任务,如图像分类、物体检测、自然语言处理等。传统的固定架构模型往往难以在所有任务上都表现出色。资源受限环境:在边缘
- [数据集][图像分类]河道污染分类数据集1923张4类别
FL1623863129
数据集分类数据挖掘人工智能
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):1922分类类别数:4类别名称:["lianghao","qingwei","yanzhong","zhongdu"]每个类别图片数:lianghao图片数:435qingwei图片数:423yanzhong图片数:577zhongdu图片数:487重要说明
- 线性代数在卷积神经网络(CNN)中的体现
科学的N次方
人工智能线性代数cnn人工智能
案例:深度学习中的卷积神经网络(CNN)在图像识别领域,卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一个广泛应用深度学习模型,它在人脸识别、物体识别、医学图像分析等方面取得了显著成效。CNN中的核心操作——卷积,就是一个直接体现线性代数应用的例子。假设我们正在训练一个用于识别猫和狗的图像分类器,原始输入是一幅RGB彩色图片,可以将其视为一个高度、宽度和通道数(R
- 深入了解OpenCVSharp中常见的图像处理功能
仰望大佬007
图像处理opencv计算机视觉c#
深入了解OpenCVSharp中常见的图像处理功能前言1.图像加载与保存2.图像基本操作3.图像滤波4.边缘检测5.图像分割6.特征检测与描述子7.目标识别与跟踪8.图像融合与拼接9.形状匹配与模板匹配10.颜色空间转换与直方图11.图像转换与绘制12.图像分类与机器学习13.高级图像处理算法14.GPU加速与并行计算前言OpenCVSharp是C#语言中用于图像处理和计算机视觉的开源库,它提供了
- [数据集][图像分类]鲜花分类数据集5735张102类别
FL1623863129
数据集计算机视觉
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):5735分类类别数:102类别名称:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19","20","21","22","23",
- 【深入了解PyTorch】PyTorch实战项目示例:深入探索图像分类、目标检测和情感分析
prince_zxill
Python实战教程人工智能与机器学习教程pytorch分类目标检测
【深入了解PyTorch】PyTorch实战项目示例:深入探索图像分类、目标检测和情感分析PyTorch实战项目示例:深入探索图像分类、目标检测和情感分析项目一:图像分类数据集准备构建模型训练模型模型评估和预测项目二:目标检测数据集准备构建模型训练模型模型评估和预测项目三:情感分析数据集准备构建模型训练模型模型评估和预测
- 深度学习图像分类中,要求待分类图像中只有一类物体吗?如果这个图像中有两类物体,那么这个图像被分为哪一类?
神笔馬良
深度学习分类人工智能
问题描述:深度学习图像分类中,要求待分类图像中只有一类物体吗?如果这个图像中有两类物体,那么这个图像被分为哪一类?问题解答:在深度学习图像分类任务中,通常假设每张图像只包含一类物体。这是因为图像分类模型是针对特定类别的,模型训练的目标是学习如何将输入图像正确分类到这些预定义的类别中。因此,如果一张图像中包含多个类别的物体,那么根据通常的假设,该图像将被分为其中的主要类别或最突出的类别。具体来说,如
- 【深度学习】S2 数学基础 P6 概率论
脚踏实地的大梦想家
#深度学习深度学习概率论
目录基本概率论概率论公理随机变量多个随机变量联合概率条件概率贝叶斯定理求和法则独立性期望与方差小结基本概率论机器学习本质上,就是做出预测。而概率论提供了一种量化和表达不确定性水平的方法,可以帮助我们量化对某个结果的确定性程度。在一个简单的图像分类任务中;如果我们非常确定图像中的对象是一只猫,那么我们可以说标签为“猫”的概率是1,即P(y=“猫”)=1P(y=“猫”)=1P(y=“猫”)=1;如果我
- 深度学习(16)--基于经典网络架构resnet训练图像分类模型
GodFishhh
深度学习深度学习python人工智能pytorch
目录一.项目介绍二.项目流程详解2.1.引入所需的工具包2.2.数据读取和预处理2.3.加载resnet152模型2.4.初始化模型2.5.设置需要更新的参数2.6.训练模块设置2.7.再次训练所有层2.8.测试网络效果三.完整代码一.项目介绍使用PyTorch工具包调用经典网络架构resnet训练图像分类模型,用于分辨不同类型的花二.项目流程详解2.1.引入所需的工具包importosimpor
- 【AIGC】Stable Diffusion应用领域
AIGCExplore
AIGCAIGCstablediffusion人工智能
StableDiffusion是一个基于OpenAI的Diffusion模型的扩展版本,主要用于图像生成和处理任务。它并不是一个图像分类模型,而是一个生成式模型,可以生成高质量的图像。以下是StableDiffusion模型的主要功能和应用领域:图像生成:StableDiffusion可以生成各种类型的图像,包括人物肖像、风景、动物、静物等。它能够生成高分辨率、真实感和多样性的图像,具有良好的生成
- ubuntu22.04@laptop OpenCV Get Started: 015_deep_learning_with_opencv_dnn_module
lida2003
Linuxopencvdnn人工智能计算机视觉开源
ubuntu22.04@laptopOpenCVGetStarted:015_deep_learning_with_opencv_dnn_module1.源由2.应用Demo2.1C++应用Demo2.2Python应用Demo3.使用OpenCVDNN模块进行图像分类3.1导入模块并加载类名文本文件3.2从磁盘加载预训练DenseNet121模型3.3读取图像并准备为模型输入3.4通过模型进行前
- 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(1)搭建一个机器学习模型
giszz
人工智能学习笔记人工智能学习笔记
今天学习的是,如何搭建一个机器学习模型。主要有以上的步骤:原始数据采集特征工程数据预处理特征提取特征转换(构造)预测识别(模型训练和测试)在实际工作中,特征比模型更重要。数据和特征的选择,已经决定了模型的天花板,模型算法只是去逼近这个上限。在上述的特征工程中:数据预处理,就是去除数据的噪声,例如文本中的错误、不再使用的词语等;特征提取,就是从原始数据中提取一些有效的特征。例如图像分类中,提取边缘、
- Matlab DNN多层感知机进行图像分类——附源码分享
我是狮子搏兔
Predictionmatlabmatlabdnnpython
提示:麻烦点赞,拒绝白嫖文章目录前言一、数据来源二、训练+预测_一步到位源码1.DNN.m总结前言Python不香吗?非得用matlab来搞机器学习的东西?不是不是,matlab也有集成了许多机器学习算法,当然,都是一些非常基础的机器学习算法。深度学习还是得向python看齐。今天试用了一下matlab自带的DNN模型,封装在newff函数里,寥寥几行代码,非常简洁。提示:以下是本篇文章正文内容,
- Seq2seq模型以及Beam Search
非洲小可爱
自然语言处理seq2seqbeansearch贪心算法
seq2seq模型及BeamsearchSeq2Seq是一个Encoder-Deocder结构的模型,输入是一个序列,输出也是一个序列。Encoder将一个可变长度的输入序列变为固定长度的向量,Decoder将这个固定长度的向量解码成可变长度的输出序列。目标是最大化该目标函数:seq2seq模型种类onetoone结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景
- pytorch图像分类全流程(五)--图像分类算法精度评估指标
已经大四了,继续努力
datawhalepytorchpytorch分类深度学习
本次我们来学习图像分类算法精度的各种评估指标:precision、recall、accuracy、f1-score、AP、AUC。首先我们来学一个很重要的概念,混淆矩阵:1.精确率(Precision):指的是所有被判定为正类(TP+FP)中,真实的正类(TP)占的比例。2.召回率(Recall):指的是所有真实为正类(TP+FN)中,被判定为正类(TP)占的比例。3.准确率(accuracy):
- pytorch,cnn,rnn和yolo关系
小小娱乐
pytorchcnnrnn
卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnly卷积神经网络(ConvolutionalNeuralNetworks,CNN)和YOLO(YouOnlyLookOnce)都是深度学习中的重要技术,它们在处理图像数据方面有着广泛的应用。CNN是一种以卷积为核心的神经网络,被广泛用于图像分类、物体检测等任务。YOLO则是一种基于CNN的目标检测算
- linux系统服务器下jsp传参数乱码
3213213333332132
javajsplinuxwindowsxml
在一次解决乱码问题中, 发现jsp在windows下用js原生的方法进行编码没有问题,但是到了linux下就有问题, escape,encodeURI,encodeURIComponent等都解决不了问题
但是我想了下既然原生的方法不行,我用el标签的方式对中文参数进行加密解密总该可以吧。于是用了java的java.net.URLDecoder,结果还是乱码,最后在绝望之际,用了下面的方法解决了
- Spring 注解区别以及应用
BlueSkator
spring
1. @Autowired
@Autowired是根据类型进行自动装配的。如果当Spring上下文中存在不止一个UserDao类型的bean,或者不存在UserDao类型的bean,会抛出 BeanCreationException异常,这时可以通过在该属性上再加一个@Qualifier注解来声明唯一的id解决问题。
2. @Qualifier
当spring中存在至少一个匹
- printf和sprintf的应用
dcj3sjt126com
PHPsprintfprintf
<?php
printf('b: %b <br>c: %c <br>d: %d <bf>f: %f', 80,80, 80, 80);
echo '<br />';
printf('%0.2f <br>%+d <br>%0.2f <br>', 8, 8, 1235.456);
printf('th
- config.getInitParameter
171815164
parameter
web.xml
<servlet>
<servlet-name>servlet1</servlet-name>
<jsp-file>/index.jsp</jsp-file>
<init-param>
<param-name>str</param-name>
- Ant标签详解--基础操作
g21121
ant
Ant的一些核心概念:
build.xml:构建文件是以XML 文件来描述的,默认构建文件名为build.xml。 project:每个构建文
- [简单]代码片段_数据合并
53873039oycg
代码
合并规则:删除家长phone为空的记录,若一个家长对应多个孩子,保留一条家长记录,家长id修改为phone,对应关系也要修改。
代码如下:
- java 通信技术
云端月影
Java 远程通信技术
在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如:RMI、MINA、ESB、Burlap、Hessian、SOAP、EJB和JMS等,这些名词之间到底是些什么关系呢,它们背后到底是基于什么原理实现的呢,了解这些是实现分布式服务框架的基础知识,而如果在性能上有高的要求的话,那深入了解这些技术背后的机制就是必须的了,在这篇blog中我们将来
- string与StringBuilder 性能差距到底有多大
aijuans
之前也看过一些对string与StringBuilder的性能分析,总感觉这个应该对整体性能不会产生多大的影响,所以就一直没有关注这块!
由于学程序初期最先接触的string拼接,所以就一直没改变过自己的习惯!
- 今天碰到 java.util.ConcurrentModificationException 异常
antonyup_2006
java多线程工作IBM
今天改bug,其中有个实现是要对map进行循环,然后有删除操作,代码如下:
Iterator<ListItem> iter = ItemMap.keySet.iterator();
while(iter.hasNext()){
ListItem it = iter.next();
//...一些逻辑操作
ItemMap.remove(it);
}
结果运行报Con
- PL/SQL的类型和JDBC操作数据库
百合不是茶
PL/SQL表标量类型游标PL/SQL记录
PL/SQL的标量类型:
字符,数字,时间,布尔,%type五中类型的
--标量:数据库中预定义类型的变量
--定义一个变长字符串
v_ename varchar2(10);
--定义一个小数,范围 -9999.99~9999.99
v_sal number(6,2);
--定义一个小数并给一个初始值为5.4 :=是pl/sql的赋值号
- Mockito:一个强大的用于 Java 开发的模拟测试框架实例
bijian1013
mockito单元测试
Mockito框架:
Mockito是一个基于MIT协议的开源java测试框架。 Mockito区别于其他模拟框架的地方主要是允许开发者在没有建立“预期”时验证被测系统的行为。对于mock对象的一个评价是测试系统的测
- 精通Oracle10编程SQL(10)处理例外
bijian1013
oracle数据库plsql
/*
*处理例外
*/
--例外简介
--处理例外-传递例外
declare
v_ename emp.ename%TYPE;
begin
SELECT ename INTO v_ename FROM emp
where empno=&no;
dbms_output.put_line('雇员名:'||v_ename);
exceptio
- 【Java】Java执行远程机器上Linux命令
bit1129
linux命令
Java使用ethz通过ssh2执行远程机器Linux上命令,
封装定义Linux机器的环境信息
package com.tom;
import java.io.File;
public class Env {
private String hostaddr; //Linux机器的IP地址
private Integer po
- java通信之Socket通信基础
白糖_
javasocket网络协议
正处于网络环境下的两个程序,它们之间通过一个交互的连接来实现数据通信。每一个连接的通信端叫做一个Socket。一个完整的Socket通信程序应该包含以下几个步骤:
①创建Socket;
②打开连接到Socket的输入输出流;
④按照一定的协议对Socket进行读写操作;
④关闭Socket。
Socket通信分两部分:服务器端和客户端。服务器端必须优先启动,然后等待soc
- angular.bind
boyitech
AngularJSangular.bindAngularJS APIbind
angular.bind 描述: 上下文,函数以及参数动态绑定,返回值为绑定之后的函数. 其中args是可选的动态参数,self在fn中使用this调用。 使用方法: angular.bind(se
- java-13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class KickOutBadGuys {
/**
* 题目:13个坏人和13个好人站成一圈,数到7就从圈里面踢出一个来,要求把所有坏人都给踢出来,所有好人都留在圈里。请找出初始时坏人站的位置。
* Maybe you can find out
- Redis.conf配置文件及相关项说明(自查备用)
Kai_Ge
redis
Redis.conf配置文件及相关项说明
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specifiy
# it in the usual form of 1k 5GB 4M and so forth:
#
- [强人工智能]实现大规模拓扑分析是实现强人工智能的前奏
comsci
人工智能
真不好意思,各位朋友...博客再次更新...
节点数量太少,网络的分析和处理能力肯定不足,在面对机器人控制的需求方面,显得力不从心....
但是,节点数太多,对拓扑数据处理的要求又很高,设计目标也很高,实现起来难度颇大...
- 记录一些常用的函数
dai_lm
java
public static String convertInputStreamToString(InputStream is) {
StringBuilder result = new StringBuilder();
if (is != null)
try {
InputStreamReader inputReader = new InputStreamRead
- Hadoop中小规模集群的并行计算缺陷
datamachine
mapreducehadoop并行计算
注:写这篇文章的初衷是因为Hadoop炒得有点太热,很多用户现有数据规模并不适用于Hadoop,但迫于扩容压力和去IOE(Hadoop的廉价扩展的确非常有吸引力)而尝试。尝试永远是件正确的事儿,但有时候不用太突进,可以调优或调需求,发挥现有系统的最大效用为上策。
-----------------------------------------------------------------
- 小学4年级英语单词背诵第二课
dcj3sjt126com
englishword
egg 蛋
twenty 二十
any 任何
well 健康的,好
twelve 十二
farm 农场
every 每一个
back 向后,回
fast 快速的
whose 谁的
much 许多
flower 花
watch 手表
very 非常,很
sport 运动
Chinese 中国的
- 自己实践了github的webhooks, linux上面的权限需要注意
dcj3sjt126com
githubwebhook
环境, 阿里云服务器
1. 本地创建项目, push到github服务器上面
2. 生成www用户的密钥
sudo -u www ssh-keygen -t rsa -C "
[email protected]"
3. 将密钥添加到github帐号的SSH_KEYS里面
3. 用www用户执行克隆, 源使
- Java冒泡排序
蕃薯耀
冒泡排序Java冒泡排序Java排序
冒泡排序
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 10:40:14 星期二
http://fanshuyao.iteye.com/
- Excle读取数据转换为实体List【基于apache-poi】
hanqunfeng
apache
1.依赖apache-poi
2.支持xls和xlsx
3.支持按属性名称绑定数据值
4.支持从指定行、列开始读取
5.支持同时读取多个sheet
6.具体使用方式参见org.cpframework.utils.excelreader.CP_ExcelReaderUtilTest.java
比如:
Str
- 3个处于草稿阶段的Javascript API介绍
jackyrong
JavaScript
原文:
http://www.sitepoint.com/3-new-javascript-apis-may-want-follow/?utm_source=html5weekly&utm_medium=email
本文中,介绍3个仍然处于草稿阶段,但应该值得关注的Javascript API.
1) Web Alarm API
&
- 6个创建Web应用程序的高效PHP框架
lampcy
Web框架PHP
以下是创建Web应用程序的PHP框架,有coder bay网站整理推荐:
1. CakePHP
CakePHP是一个PHP快速开发框架,它提供了一个用于开发、维护和部署应用程序的可扩展体系。CakePHP使用了众所周知的设计模式,如MVC和ORM,降低了开发成本,并减少了开发人员写代码的工作量。
2. CodeIgniter
CodeIgniter是一个非常小且功能强大的PHP框架,适合需
- 评"救市后中国股市新乱象泛起"谣言
nannan408
首先来看百度百家一位易姓作者的新闻:
三个多星期来股市持续暴跌,跌得投资者及上市公司都处于极度的恐慌和焦虑中,都要寻找自保及规避风险的方式。面对股市之危机,政府突然进入市场救市,希望以此来重建市场信心,以此来扭转股市持续暴跌的预期。而政府进入市场后,由于市场运作方式发生了巨大变化,投资者及上市公司为了自保及为了应对这种变化,中国股市新的乱象也自然产生。
首先,中国股市这两天
- 页面全屏遮罩的实现 方式
Rainbow702
htmlcss遮罩mask
之前做了一个页面,在点击了某个按钮之后,要求页面出现一个全屏遮罩,一开始使用了position:absolute来实现的。当时因为画面大小是固定的,不可以resize的,所以,没有发现问题。
最近用了同样的做法做了一个遮罩,但是画面是可以进行resize的,所以就发现了一个问题,当画面被reisze到浏览器出现了滚动条的时候,就发现,用absolute 的做法是有问题的。后来改成fixed定位就
- 关于angularjs的点滴
tntxia
AngularJS
angular是一个新兴的JS框架,和以往的框架不同的事,Angularjs更注重于js的建模,管理,同时也提供大量的组件帮助用户组建商业化程序,是一种值得研究的JS框架。
Angularjs使我们可以使用MVC的模式来写JS。Angularjs现在由谷歌来维护。
这里我们来简单的探讨一下它的应用。
首先使用Angularjs我
- Nutz--->>反复新建ioc容器的后果
xiaoxiao1992428
DAOmvcIOCnutz
问题:
public class DaoZ {
public static Dao dao() { // 每当需要使用dao的时候就取一次
Ioc ioc = new NutIoc(new JsonLoader("dao.js"));
return ioc.get(