- 模拟ic学习1:效应总结
soulermax
学习硬件工程
亚阈值效应importmath#导入数学库#定义公式中的参数I0=1.0#I0是一个常数,表示当VGS=0时的漏电流VT=0.026#VT是热电压(thermalvoltage),约为25mV在常温下n=1.5#n是一个常数,被称为取决于器件的因子VGS=0.5#VGS是栅极-源极电压(gate-sourcevoltage)#使用公式计算IDID=I0*math.exp(VGS/(VT*n))pr
- Java 程序员必备的 26 个 Linux 命令,常用 + 面试两手抓
库库林_沙琪马
Linuxlinux面试运维
有人问我:日常开发中最常用的Linux命令有哪些?我不假思索地就列出了26个,涵盖开发、调试、运维场景,每一个都值得收藏+实战。内容速览26个高频Linux命令详解面试官常问的重点命令实操建议&学习指引一、开发者高频使用的26个Linux命令1️⃣cd-切换目录cd/usr/local/bincd..cd~Tips:~表示当前用户主目录,..表示上级目录。2️⃣mkdir-创建目录mkdirmyd
- 镜子练习模板Day2
hehuiyi
健康医疗
让镜子成为你的好朋友,我们学习的仔细的看自己并超越旧的信念。看待镜中的自己的眼睛的时候,说这一句肯定句:[(自己的名字),我爱你,我真的、真的爱你]这一句话说多两遍,但这一句话很多人都不敢对自己说。因为每个人做事情对待自己的时候,都不是真正的爱自己。书上说至少给自己说100次/天,你没有看错,一天100次。这种做法叫做洗一下你的内心的潜意识,那一句讨厌自己的话语,慢慢的你就会爱自己了。我觉得自己讨
- 基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)
神经网络15044
深度学习算法神经网络python深度学习django机器学习人工智能算法目标检测
基于深度学习的线上问诊系统设计与实现(Python+Django+MySQL)一、系统概述本系统结合YOLOv8目标检测和ResNet50图像分类算法,构建了一个智能线上问诊平台。系统支持用户上传医学影像(皮肤照片/X光片),自动分析并生成诊断报告,同时提供医生审核功能。二、技术栈后端框架:Django4.2数据库:MySQL8.0深度学习:YOLOv8:皮肤病变区域检测ResNet50:肺炎X光
- 国内仍然可用docker镜像源汇总,长期维护,定期更新(2025年5月26日)
夏boss
Dockerdocker容器
文章目录可用镜像:测试镜像是否可用使用方法1、临时配置2、永久配置linux配置镜像源Windows/Mac配置镜像源本文提供多个目前可正常访问的Docker镜像,解决Docker拉取镜像失败的问题。并提供镜像源使用方法,包括Linux/Windows/Mac系统设置。所有镜像仅供学习使用,禁止不当使用。由于一些未明确的原因,各大高校及容器技术社区纷纷关闭多个镜像加速站点,对于我们这种正规的用户来
- LeetCode第300题_最长递增子序列
@蓝莓果粒茶
算法leetcode算法职场和发展学习c#游戏python
LeetCode第300题:最长递增子序列文章摘要本文详细解析LeetCode第300题"最长递增子序列",这是一道考察动态规划和二分查找的中等难度题目。文章提供了动态规划和贪心+二分查找两种实现方案,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合学习动态规划和二分查找的读者。核心知识点:动态规划、二分查找、贪心算法难度等级:中等推荐人群:具备基础算法知识,想要提升
- LeetCode第301题_删除无效括号
@蓝莓果粒茶
算法leetcode算法职场和发展c#学习pythonc++
LeetCode第301题:删除无效括号文章摘要本文详细解析LeetCode第301题"删除无效括号",这是一道考察DFS和括号匹配的困难难度题目。文章提供了DFS和BFS两种实现方案,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合学习深度优先搜索和字符串处理的读者。核心知识点:DFS、BFS、括号匹配、字符串处理难度等级:困难推荐人群:具备基础算法知识,想要提升搜
- 第九章:LeRobot自定义硬件集成指南
贾全
实战具身智能机器人算法机器人学习人工智能机器学习
引言在前面的章节中,我们学习了如何使用LeRobot进行模仿学习、仿真实验以及摄像头配置。然而,真正的机器人研究往往需要使用自定义的硬件平台。每个研究团队或开发者可能都有自己独特的机器人设计,如何将这些自定义硬件无缝集成到LeRobot生态系统中,是实现高效机器人学习的关键。本章将详细介绍LeRobot的硬件集成框架,帮助读者掌握如何将自己的机器人硬件接入LeRobot系统。通过学习本章内容,你将
- 深度学习中常见激活函数总结
向左转, 向右走ˉ
深度学习人工智能pytorchpython
以下是一份深度学习激活函数的系统总结,涵盖定义、类型、作用、应用及选择影响,便于你快速掌握核心知识:一、激活函数的定义在神经网络中,激活函数(ActivationFunction)是神经元计算输出的非线性变换函数,作用于加权输入和偏置之和:输出=f(加权和+偏置)核心价值:引入非线性,使神经网络能够拟合任意复杂函数(无激活函数的深度网络等价于单层线性模型)。二、常见激活函数类型1.线性函数(Lin
- 2024.12.08学习笔记
kim_puppy
学习笔记
目录1.数组练习1.1数组练习2.全排列的思路(运用到深搜)2.1全排列的思路(运用到深搜)1.数组练习1.1数组练习先是一个思路比较容易理清楚的数组问题,如下:美国数学家维纳(N.Wiener)智力早熟,一次,他参加某个重要会议,年轻的脸孔引人注目。于是有人询问他的年龄,他回答说:“我年龄的立方是个4位数。我年龄的4次方是个6位数。这10个数字正好包含了从0到9这10个数字,每个都恰好出现1次。
- 免费小学口算出题器:自动生成语数英题目 支持打印导出
小龙软件库
开源软件电脑windows
各位家有小学生的宝爸宝妈们,还有辛勤的老师们,快来听我说!你们有没有过这样的经历,想给孩子找点合适的练习题,结果翻遍资料也找不到,累得头晕眼花?别急,小学生出题软件这一神器闪亮登场啦!软件下载地址这软件就是专门给小学阶段孩子量身打造的智能教育小帮手。它能帮家长和老师轻松地弄出符合孩子学习进度的练习题。软件有个预设算法,能自动生成数学、语文、英语这些科目的题目。数学题那是应有尽有,加减乘除、分数运算
- 关联规则算法学习—Apriori
Did然
数据挖掘算法学习python数据挖掘
关联规则算法学习—Apriori一、实验项目:关联规则算法学习项目性质:设计型二、实验目的:理解并掌握关联规则经典算法Apriori算法,理解算法的原理,能够实现算法,并对给定的数据集进行关联规则挖掘三、实验内容:1、实现Apriori算法,验证算法的正确性,并将算法应用于给定的数据集Groceries,根据设定的支持度和置信度,挖掘出符合条件的频繁项集及关联规则。2、挑选几个有代表性的频繁项集和
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- Matplotlib 完全指南:从入门到精通
老哥不老
pythonmatplotlib
前言Matplotlib是Python中最基础、最强大的数据可视化库之一。无论你是数据分析师、数据科学家还是研究人员,掌握Matplotlib都是必不可少的技能。本文将带你从零开始学习Matplotlib,帮助你掌握各种图表的绘制方法和高级技巧。目录Matplotlib简介安装与基础配置基础绘图常用图表类型图表样式与美化多子图布局高级技巧实战案例常见问题与解决方案总结与资源Matplotlib简介
- FP16、BF16、INT8、INT4精度模型加载所需显存以及硬件适配的分析
herosunly
大模型精度BF16硬件适配
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了FP16、INT8、INT4精度模型加载占用显存大小的分析,希望对学习大
- Netty学习路线图 - 第二阶段:Java NIO基础
by.G
学习javanio
Netty学习路线图-第二阶段:JavaNIO基础Netty学习系列之二本文是Netty学习路线的第二篇,重点讲解JavaNIO的核心概念及编程模型,这是理解Netty设计理念的关键基础。引言在上一篇文章中,我们介绍了学习Netty的第一阶段:Java基础与网络编程基础。本篇文章我们将深入探讨JavaNIO(NewI/O或Non-blockingI/O)的核心概念和编程模型,这是理解Netty框架
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 板凳-------Mysql cookbook学习 (十--7)
第8章:生成摘要8.0引言mysql>select*fromstatesorderbyname;+----------------+--------+------------+----------+|name|abbrev|statehood|pop|+----------------+--------+------------+----------+|Alabama|AL|1819-12-14|
- 板凳-------Mysql cookbook学习 (十--15)
fengye207161
mysql学习android
10.31编写时间处理工具sql--创建测试数据--插入所有原始数据,使用STR_TO_DATE函数处理不同格式的日期INSERTINTOdate_test(event_name,event_date)VALUES('Fred',STR_TO_DATE('04-13-70','%m-%d-%y')),('Mort',STR_TO_DATE('09-3-69','%m-%d-%y')),('Alic
- Lynda.com软件教程英文字幕集锦
mater lai
本文还有配套的精品资源,点击获取简介:Lynda.com平台上的英文字幕文件汇集了从基础到高级的各类软件教程,涵盖AutodeskMaya、AdobeIllustrator、MicrosoftPowerPoint、AdobePhotoshop、Windows7操作系统、3dsMax、AutoCAD以及AdobeAfterEffects的使用和技巧。这些字幕文件为学习者提供了精准理解软件操作和技术术
- 数字信号处理(DSP)全方位学习指南
本文还有配套的精品资源,点击获取简介:数字信号处理(DSP)是信息技术的关键部分,涉及多种数字信号的分析与处理技术,广泛应用于多个技术领域。本指南深入探索DSP的集成开发环境(IDE),基础概念,以及专业词汇,旨在帮助读者系统掌握DSP原理和实践技能。内容涵盖DSP集成开发环境CCS的使用、基础知识如傅里叶变换与滤波器设计,以及专业术语的学习。此外,还介绍了DSP在音频、图像处理和通信系统中的实际
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 【unity游戏开发——网络】网络协议、TCP vs UDP 本质区别
向宇it
【unity游戏开发——网络】网络网络协议unity游戏引擎c#tcp/ipudp
注意:考虑到热更新的内容比较多,我将热更新的内容分开,并全部整合放在【unity游戏开发——网络】专栏里,感兴趣的小伙伴可以前往逐一查看学习。文章目录一、网络协议概述二、OSI七层模型三、TCP/IP四层模型四、核心传输协议对比1、TCPvsUDP本质区别2、TCP关键机制详解2.1三次握手建立连接2.2四次挥手断开连接五、常见面试题精要六、总结1、TCP:2、UDP:专栏推荐完结一、网络协议概述
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 掌握Linux C++轻量级Web服务器开发:TinyWebServer项目实战
老光私享
本文还有配套的精品资源,点击获取简介:TinyWebServer是一个用C++编写的轻量级Web服务器,专为Linux系统设计。它提供了深入学习Web服务器工作原理和本地开发小型项目的机会。项目涵盖了网络套接字编程、多线程处理、HTTP协议解析等关键系统编程技术,并允许通过源代码分析学习和实践。开发者可以通过扩展TinyWebServer来学习更多关于Web服务器的深入知识和技术。1.Linux下
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默