天池二手车价格预测:数据的探索性分析(EDA)

1. 数据的探索性分析理解

  • 数据探索在机器学习中我们一般称为EDA(Exploratory Data Analysis):是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法。
  • EDA的主要工作包括:
    (1)数据的初步分析:样本数量,训练集数量,是否有时间特征,是否是时序问题,特征所表示的含义(非匿名特征),特征类型(字符类似,int,float,time),特征的缺失情况(注意缺失的在数据中的表现形式,有些是空的有些是”NAN”符号等),特征的基本统计信息。从这些方面对数据进行一个基本的了解。
    (2)缺失处理:分析记录某些特征值缺失占比30%以上样本的缺失处理,有助于后续的模型验证和调节,分析特征应该是填充(填充方式是什么,均值填充,0填充,众数填充等),还是舍去,还是先做样本分类用不同的特征模型去预测。
    (3)对于Label做专门的分析,分析标签的分布情况等。
    (4)进一步分析可以通过对特征作图,特征和label联合做图(统计图,离散图),直观了解特征的分布情况,通过这一步也可以发现数据之中的一些异常值等,通过箱型图分析一些特征值的偏离情况,对于特征和特征联合作图,对于特征和label联合作图,分析其中的一些关联性。

2. 具体流程

pip install missingno
#coding:utf-8
#导入warning包,利用过滤器来实现忽略警告语句
import warnings
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

1.载入训练集和测试集

# 载入训练集和测试集
Train_data = pd.read_csv('used_car_train_20200313.csv', sep = ' ')
Test_data = pd.read_csv('used_car_testA_20200313.csv', sep = ' ')

2.整体观察训练集和测试集 通过head方法简略观察数据信息,通过shape观察数据整体规模 要养成看数据集的head()以及shape的习惯,这是一种检查操作失误,避免连续错误的方法, 如果对自己的pandas等操作不放心,建议执行一步看一下,这样会有效的方便你进行理解函数并进行操作

# 简略观察训练集数据
Train_data.head().append(Train_data.tail())
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 0 736 20040402 30.0 6 1.0 0.0 0.0 60 12.5 ... 0.235676 0.101988 0.129549 0.022816 0.097462 -2.881803 2.804097 -2.420821 0.795292 0.914762
1 1 2262 20030301 40.0 1 2.0 0.0 0.0 0 15.0 ... 0.264777 0.121004 0.135731 0.026597 0.020582 -4.900482 2.096338 -1.030483 -1.722674 0.245522
2 2 14874 20040403 115.0 15 1.0 0.0 0.0 163 12.5 ... 0.251410 0.114912 0.165147 0.062173 0.027075 -4.846749 1.803559 1.565330 -0.832687 -0.229963
3 3 71865 19960908 109.0 10 0.0 0.0 1.0 193 15.0 ... 0.274293 0.110300 0.121964 0.033395 0.000000 -4.509599 1.285940 -0.501868 -2.438353 -0.478699
4 4 111080 20120103 110.0 5 1.0 0.0 0.0 68 5.0 ... 0.228036 0.073205 0.091880 0.078819 0.121534 -1.896240 0.910783 0.931110 2.834518 1.923482
149995 149995 163978 20000607 121.0 10 4.0 0.0 1.0 163 15.0 ... 0.280264 0.000310 0.048441 0.071158 0.019174 1.988114 -2.983973 0.589167 -1.304370 -0.302592
149996 149996 184535 20091102 116.0 11 0.0 0.0 0.0 125 10.0 ... 0.253217 0.000777 0.084079 0.099681 0.079371 1.839166 -2.774615 2.553994 0.924196 -0.272160
149997 149997 147587 20101003 60.0 11 1.0 1.0 0.0 90 6.0 ... 0.233353 0.000705 0.118872 0.100118 0.097914 2.439812 -1.630677 2.290197 1.891922 0.414931
149998 149998 45907 20060312 34.0 10 3.0 1.0 0.0 156 15.0 ... 0.256369 0.000252 0.081479 0.083558 0.081498 2.075380 -2.633719 1.414937 0.431981 -1.659014
149999 149999 177672 19990204 19.0 28 6.0 0.0 1.0 193 12.5 ... 0.284475 0.000000 0.040072 0.062543 0.025819 1.978453 -3.179913 0.031724 -1.483350 -0.342674

10 rows × 31 columns

# 训练集数据规模
Train_data.shape
(150000, 31)
# 测试集数据简略观察
Test_data.head().append(Test_data.tail())
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 150000 66932 20111212 222.0 4 5.0 1.0 1.0 313 15.0 ... 0.264405 0.121800 0.070899 0.106558 0.078867 -7.050969 -0.854626 4.800151 0.620011 -3.664654
1 150001 174960 19990211 19.0 21 0.0 0.0 0.0 75 12.5 ... 0.261745 0.000000 0.096733 0.013705 0.052383 3.679418 -0.729039 -3.796107 -1.541230 -0.757055
2 150002 5356 20090304 82.0 21 0.0 0.0 0.0 109 7.0 ... 0.260216 0.112081 0.078082 0.062078 0.050540 -4.926690 1.001106 0.826562 0.138226 0.754033
3 150003 50688 20100405 0.0 0 0.0 0.0 1.0 160 7.0 ... 0.260466 0.106727 0.081146 0.075971 0.048268 -4.864637 0.505493 1.870379 0.366038 1.312775
4 150004 161428 19970703 26.0 14 2.0 0.0 0.0 75 15.0 ... 0.250999 0.000000 0.077806 0.028600 0.081709 3.616475 -0.673236 -3.197685 -0.025678 -0.101290
49995 199995 20903 19960503 4.0 4 4.0 0.0 0.0 116 15.0 ... 0.284664 0.130044 0.049833 0.028807 0.004616 -5.978511 1.303174 -1.207191 -1.981240 -0.357695
49996 199996 708 19991011 0.0 0 0.0 0.0 0.0 75 15.0 ... 0.268101 0.108095 0.066039 0.025468 0.025971 -3.913825 1.759524 -2.075658 -1.154847 0.169073
49997 199997 6693 20040412 49.0 1 0.0 1.0 1.0 224 15.0 ... 0.269432 0.105724 0.117652 0.057479 0.015669 -4.639065 0.654713 1.137756 -1.390531 0.254420
49998 199998 96900 20020008 27.0 1 0.0 0.0 1.0 334 15.0 ... 0.261152 0.000490 0.137366 0.086216 0.051383 1.833504 -2.828687 2.465630 -0.911682 -2.057353
49999 199999 193384 20041109 166.0 6 1.0 NaN 1.0 68 9.0 ... 0.228730 0.000300 0.103534 0.080625 0.124264 2.914571 -1.135270 0.547628 2.094057 -1.552150

10 rows × 30 columns

# 测试集数据规模
Test_data.shape
(50000, 30)

3.总览数据概况
(1)describe方法,输出每列基本统计信息,可以掌握数据的大概范围并进行异常值的判断
(2)info方法,了解数据的类型信息

# 通过describe来熟悉数据的相关统计量
Train_data.describe()
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
count 150000.000000 150000.000000 1.500000e+05 149999.000000 150000.000000 145494.000000 141320.000000 144019.000000 150000.000000 150000.000000 ... 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000
mean 74999.500000 68349.172873 2.003417e+07 47.129021 8.052733 1.792369 0.375842 0.224943 119.316547 12.597160 ... 0.248204 0.044923 0.124692 0.058144 0.061996 -0.001000 0.009035 0.004813 0.000313 -0.000688
std 43301.414527 61103.875095 5.364988e+04 49.536040 7.864956 1.760640 0.548677 0.417546 177.168419 3.919576 ... 0.045804 0.051743 0.201410 0.029186 0.035692 3.772386 3.286071 2.517478 1.288988 1.038685
min 0.000000 0.000000 1.991000e+07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 -9.168192 -5.558207 -9.639552 -4.153899 -6.546556
25% 37499.750000 11156.000000 1.999091e+07 10.000000 1.000000 0.000000 0.000000 0.000000 75.000000 12.500000 ... 0.243615 0.000038 0.062474 0.035334 0.033930 -3.722303 -1.951543 -1.871846 -1.057789 -0.437034
50% 74999.500000 51638.000000 2.003091e+07 30.000000 6.000000 1.000000 0.000000 0.000000 110.000000 15.000000 ... 0.257798 0.000812 0.095866 0.057014 0.058484 1.624076 -0.358053 -0.130753 -0.036245 0.141246
75% 112499.250000 118841.250000 2.007111e+07 66.000000 13.000000 3.000000 1.000000 0.000000 150.000000 15.000000 ... 0.265297 0.102009 0.125243 0.079382 0.087491 2.844357 1.255022 1.776933 0.942813 0.680378
max 149999.000000 196812.000000 2.015121e+07 247.000000 39.000000 7.000000 6.000000 1.000000 19312.000000 15.000000 ... 0.291838 0.151420 1.404936 0.160791 0.222787 12.357011 18.819042 13.847792 11.147669 8.658418

8 rows × 30 columns

Test_data.describe()
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
count 50000.000000 50000.000000 5.000000e+04 50000.000000 50000.000000 48587.000000 47107.000000 48090.000000 50000.000000 50000.000000 ... 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000
mean 174999.500000 68542.223280 2.003393e+07 46.844520 8.056240 1.782185 0.373405 0.224350 119.883620 12.595580 ... 0.248669 0.045021 0.122744 0.057997 0.062000 -0.017855 -0.013742 -0.013554 -0.003147 0.001516
std 14433.901067 61052.808133 5.368870e+04 49.469548 7.819477 1.760736 0.546442 0.417158 185.097387 3.908979 ... 0.044601 0.051766 0.195972 0.029211 0.035653 3.747985 3.231258 2.515962 1.286597 1.027360
min 150000.000000 0.000000 1.991000e+07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 -9.160049 -5.411964 -8.916949 -4.123333 -6.112667
25% 162499.750000 11203.500000 1.999091e+07 10.000000 1.000000 0.000000 0.000000 0.000000 75.000000 12.500000 ... 0.243762 0.000044 0.062644 0.035084 0.033714 -3.700121 -1.971325 -1.876703 -1.060428 -0.437920
50% 174999.500000 52248.500000 2.003091e+07 29.000000 6.000000 1.000000 0.000000 0.000000 109.000000 15.000000 ... 0.257877 0.000815 0.095828 0.057084 0.058764 1.613212 -0.355843 -0.142779 -0.035956 0.138799
75% 187499.250000 118856.500000 2.007110e+07 65.000000 13.000000 3.000000 1.000000 0.000000 150.000000 15.000000 ... 0.265328 0.102025 0.125438 0.079077 0.087489 2.832708 1.262914 1.764335 0.941469 0.681163
max 199999.000000 196805.000000 2.015121e+07 246.000000 39.000000 7.000000 6.000000 1.000000 20000.000000 15.000000 ... 0.291618 0.153265 1.358813 0.156355 0.214775 12.338872 18.856218 12.950498 5.913273 2.624622

8 rows × 29 columns

通过describe的输出可以大致获得一定信息,如fuelType和gearbox只有14万条左右信息,而总体数据量为15万,因此有1万多条信息异常或缺失;bodytype最大值为7,因此总共有7种车型等。

# 观察训练集和测试集中的数据类型
Train_data.info()

RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
SaleID               150000 non-null int64
name                 150000 non-null int64
regDate              150000 non-null int64
model                149999 non-null float64
brand                150000 non-null int64
bodyType             145494 non-null float64
fuelType             141320 non-null float64
gearbox              144019 non-null float64
power                150000 non-null int64
kilometer            150000 non-null float64
notRepairedDamage    150000 non-null object
regionCode           150000 non-null int64
seller               150000 non-null int64
offerType            150000 non-null int64
creatDate            150000 non-null int64
price                150000 non-null int64
v_0                  150000 non-null float64
v_1                  150000 non-null float64
v_2                  150000 non-null float64
v_3                  150000 non-null float64
v_4                  150000 non-null float64
v_5                  150000 non-null float64
v_6                  150000 non-null float64
v_7                  150000 non-null float64
v_8                  150000 non-null float64
v_9                  150000 non-null float64
v_10                 150000 non-null float64
v_11                 150000 non-null float64
v_12                 150000 non-null float64
v_13                 150000 non-null float64
v_14                 150000 non-null float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB
Test_data.info()

RangeIndex: 50000 entries, 0 to 49999
Data columns (total 30 columns):
SaleID               50000 non-null int64
name                 50000 non-null int64
regDate              50000 non-null int64
model                50000 non-null float64
brand                50000 non-null int64
bodyType             48587 non-null float64
fuelType             47107 non-null float64
gearbox              48090 non-null float64
power                50000 non-null int64
kilometer            50000 non-null float64
notRepairedDamage    50000 non-null object
regionCode           50000 non-null int64
seller               50000 non-null int64
offerType            50000 non-null int64
creatDate            50000 non-null int64
v_0                  50000 non-null float64
v_1                  50000 non-null float64
v_2                  50000 non-null float64
v_3                  50000 non-null float64
v_4                  50000 non-null float64
v_5                  50000 non-null float64
v_6                  50000 non-null float64
v_7                  50000 non-null float64
v_8                  50000 non-null float64
v_9                  50000 non-null float64
v_10                 50000 non-null float64
v_11                 50000 non-null float64
v_12                 50000 non-null float64
v_13                 50000 non-null float64
v_14                 50000 non-null float64
dtypes: float64(20), int64(9), object(1)
memory usage: 11.4+ MB

3.判断数据缺失和异常
(1)使用isnull().sum()方法查看每列缺失值情况
(2)利用missingno库进行数据缺失的可视化分析
a.使用missingno.matrix生成数据缺失图
b.使用missingno.bar生成数据缺失图

Train_data.isnull().sum()
SaleID                  0
name                    0
regDate                 0
model                   1
brand                   0
bodyType             4506
fuelType             8680
gearbox              5981
power                   0
kilometer               0
notRepairedDamage       0
regionCode              0
seller                  0
offerType               0
creatDate               0
price                   0
v_0                     0
v_1                     0
v_2                     0
v_3                     0
v_4                     0
v_5                     0
v_6                     0
v_7                     0
v_8                     0
v_9                     0
v_10                    0
v_11                    0
v_12                    0
v_13                    0
v_14                    0
dtype: int64
Test_data.isnull().sum()
SaleID                  0
name                    0
regDate                 0
model                   0
brand                   0
bodyType             1413
fuelType             2893
gearbox              1910
power                   0
kilometer               0
notRepairedDamage       0
regionCode              0
seller                  0
offerType               0
creatDate               0
v_0                     0
v_1                     0
v_2                     0
v_3                     0
v_4                     0
v_5                     0
v_6                     0
v_7                     0
v_8                     0
v_9                     0
v_10                    0
v_11                    0
v_12                    0
v_13                    0
v_14                    0
dtype: int64
# nan简单可视化
missing = Train_data.isnull().sum()
missing = missing[missing>0]
missing.sort_values(inplace = True)
missing.plot.bar()
通过以上两句可以很直观的了解哪些列存在 “nan”, 并可以把nan的个数打印,
主要的目的在于 nan存在的个数是否真的很大,如果很小一般选择填充,
如果用lgb等树模型可以直接空缺,让树自己去优化,但如果nan存在的过多、可以考虑删掉
msno.matrix(Train_data.sample(250))
msno.matrix(Test_data.sample(250))
msno.bar(Train_data.sample(1000))
msno.bar(Test_data.sample(1000))

注意,从缺省图上看,训练集和测试集中有3列有较多缺省,实际上notRepairedDamage的缺省值最多,只不过是以 - 代替的NAN从前面的info()打印中可以看出notRepairedDamage这一列type为object,其余都为int或float我们可以将notRepairedDamage不同取值显示出来

Train_data['notRepairedDamage'].value_counts()
0.0    111361
-       24324
1.0     14315
Name: notRepairedDamage, dtype: int64

可以看出notRepairedDamage这一列中用 - 代替了NAN
我们可以用nan进行替换(很多模型有对nan进行处理的方法)

Train_data['notRepairedDamage'].replace('-', np.nan, inplace = True)
Train_data['notRepairedDamage'].value_counts()
0.0    111361
1.0     14315
Name: notRepairedDamage, dtype: int64

经过处理后就可以重新观察一下缺省值可视化结果了

Train_data.isnull().sum()
SaleID                   0
name                     0
regDate                  0
model                    1
brand                    0
bodyType              4506
fuelType              8680
gearbox               5981
power                    0
kilometer                0
notRepairedDamage    24324
regionCode               0
seller                   0
offerType                0
creatDate                0
price                    0
v_0                      0
v_1                      0
v_2                      0
v_3                      0
v_4                      0
v_5                      0
v_6                      0
v_7                      0
v_8                      0
v_9                      0
v_10                     0
v_11                     0
v_12                     0
v_13                     0
v_14                     0
dtype: int64
# 对测试集进行同样的处理
Test_data['notRepairedDamage'].replace('-', np.nan, inplace = True)
Test_data.isnull().sum()
SaleID                  0
name                    0
regDate                 0
model                   0
brand                   0
bodyType             1413
fuelType             2893
gearbox              1910
power                   0
kilometer               0
notRepairedDamage    8031
regionCode              0
seller                  0
offerType               0
creatDate               0
v_0                     0
v_1                     0
v_2                     0
v_3                     0
v_4                     0
v_5                     0
v_6                     0
v_7                     0
v_8                     0
v_9                     0
v_10                    0
v_11                    0
v_12                    0
v_13                    0
v_14                    0
dtype: int64

从前面的对于赛题分析和数据的整体观察中,可以发现seller(销售方)和offerType(报价类型)这两个类别特征严重倾斜,对预测不会有什么帮助,因此可以删除

Train_data['seller'].value_counts()
0    149999
1         1
Name: seller, dtype: int64
Train_data['offerType'].value_counts()
0    150000
Name: offerType, dtype: int64
del Train_data['seller']
del Train_data['offerType']
del Test_data['seller']
del Test_data['offerType']
Train_data.shape
(150000, 29)
Test_data.shape
(50000, 28)

4.了解预测值的分布

Train_data['price']
0          1850
1          3600
2          6222
3          2400
4          5200
5          8000
6          3500
7          1000
8          2850
9           650
10         3100
11         5450
12         1600
13         3100
14         6900
15         3200
16        10500
17         3700
18          790
19         1450
20          990
21         2800
22          350
23          599
24         9250
25         3650
26         2800
27         2399
28         4900
29         2999
          ...  
149970      900
149971     3400
149972      999
149973     3500
149974     4500
149975     3990
149976     1200
149977      330
149978     3350
149979     5000
149980     4350
149981     9000
149982     2000
149983    12000
149984     6700
149985     4200
149986     2800
149987     3000
149988     7500
149989     1150
149990      450
149991    24950
149992      950
149993     4399
149994    14780
149995     5900
149996     9500
149997     7500
149998     4999
149999     4700
Name: price, Length: 150000, dtype: int64
Train_data['price'].value_counts()
500      2337
1500     2158
1200     1922
1000     1850
2500     1821
600      1535
3500     1533
800      1513
2000     1378
999      1356
750      1279
4500     1271
650      1257
1800     1223
2200     1201
850      1198
700      1174
900      1107
1300     1105
950      1104
3000     1098
1100     1079
5500     1079
1600     1074
300      1071
550      1042
350      1005
1250     1003
6500      973
1999      929
         ... 
21560       1
7859        1
3120        1
2279        1
6066        1
6322        1
4275        1
10420       1
43300       1
305         1
1765        1
15970       1
44400       1
8885        1
2992        1
31850       1
15413       1
13495       1
9525        1
7270        1
13879       1
3760        1
24250       1
11360       1
10295       1
25321       1
8886        1
8801        1
37920       1
8188        1
Name: price, Length: 3763, dtype: int64
# 1)总体分布情况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde = False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde = False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde = False, fit=st.lognorm)
可以看出价格并不符合正态分布,所以在进行回归之前必须进行转换,
在三种拟合方法中无界约翰逊分布拟合的最好
# 2)查看skewness和kurtosis(偏度,反映统计数据偏斜方向程度,
#    峰度,衡量概率分布的峰态,峰度高就意味着方差增大是由低频度的大于或小于平均值的极端差值引起的)
sns.distplot(Train_data['price']);
print("Skewness:%f" % Train_data['price'].skew())
print("Kurtosis:%f" % Train_data['price'].kurt())
Skewness:3.346487
Kurtosis:18.995183
Train_data.skew(), Train_data.kurt()
(SaleID               6.017846e-17
 name                 5.576058e-01
 regDate              2.849508e-02
 model                1.484388e+00
 brand                1.150760e+00
 bodyType             9.915299e-01
 fuelType             1.595486e+00
 gearbox              1.317514e+00
 power                6.586318e+01
 kilometer           -1.525921e+00
 notRepairedDamage    2.430640e+00
 regionCode           6.888812e-01
 creatDate           -7.901331e+01
 price                3.346487e+00
 v_0                 -1.316712e+00
 v_1                  3.594543e-01
 v_2                  4.842556e+00
 v_3                  1.062920e-01
 v_4                  3.679890e-01
 v_5                 -4.737094e+00
 v_6                  3.680730e-01
 v_7                  5.130233e+00
 v_8                  2.046133e-01
 v_9                  4.195007e-01
 v_10                 2.522046e-02
 v_11                 3.029146e+00
 v_12                 3.653576e-01
 v_13                 2.679152e-01
 v_14                -1.186355e+00
 dtype: float64, SaleID                 -1.200000
 name                   -1.039945
 regDate                -0.697308
 model                   1.740483
 brand                   1.076201
 bodyType                0.206937
 fuelType                5.880049
 gearbox                -0.264161
 power                5733.451054
 kilometer               1.141934
 notRepairedDamage       3.908072
 regionCode             -0.340832
 creatDate            6881.080328
 price                  18.995183
 v_0                     3.993841
 v_1                    -1.753017
 v_2                    23.860591
 v_3                    -0.418006
 v_4                    -0.197295
 v_5                    22.934081
 v_6                    -1.742567
 v_7                    25.845489
 v_8                    -0.636225
 v_9                    -0.321491
 v_10                   -0.577935
 v_11                   12.568731
 v_12                    0.268937
 v_13                   -0.438274
 v_14                    2.393526
 dtype: float64)
# 直观展示整体数据偏度分布情况
sns.distplot(Train_data.skew(), color='blue', axlabel='Skewness')
#3)查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical', histtype = 'bar', color = 'red')
plt.show()

从频数分布可以看出,大于20000的值极少,也可以将大于20000的数当做特殊值(异常)处理,在前面进行填充或删除操作

5.特征分为类别特征和数字特征,并对类别特征查看unique分布

# 分离label即预测值
Y_train = Train_data['price']
# 这个区别方式适用于没有直接label coding的数据
# 对于没有直接的label含义的数据,可以通过下面的代码获取数字特征和类别特征
# 数字特征
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 类型特征
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columns

# 这里不适用,需要根据赛题分析中的信息,手动分类数字特征和类别特征
Index(['notRepairedDamage'], dtype='object')
numeric_features = ['power', 'kilometer', 'v_0', 'v_1','v_2','v_3','v_4','v_5','v_6','v_7','v_8','v_9','v_10','v_11','v_12','v_13','v_14']
categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode']
# 类别特征unique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征值分布如下:")
    print("{}特征有{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())
name的特征值分布如下:
name特征有99662不同的值
708       282
387       282
55        280
1541      263
203       233
53        221
713       217
290       197
1186      184
911       182
2044      176
1513      160
1180      158
631       157
893       153
2765      147
473       141
1139      137
1108      132
444       129
# 类别特征unique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征值分布如下:")
    print("{}特征有{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
    print(Test_data[cat_fea].value_counts())
name的特征值分布如下:
name特征有37453不同的值
55        97
708       96
387       95
1541      88
713       74
53        72
1186      67
203       67
631       65
911       64
2044      62
2866      60
1139      57

6.数字特征分析

numeric_features.append('price')
numeric_features
['power',
 'kilometer',
 'v_0',
 'v_1',
 'v_2',
 'v_3',
 'v_4',
 'v_5',
 'v_6',
 'v_7',
 'v_8',
 'v_9',
 'v_10',
 'v_11',
 'v_12',
 'v_13',
 'v_14',
 'price']
# 1)相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False), '\n')
price        1.000000
v_12         0.692823
v_8          0.685798
v_0          0.628397
power        0.219834
v_5          0.164317
v_2          0.085322
v_6          0.068970
v_1          0.060914
v_14         0.035911
v_13        -0.013993
v_7         -0.053024
v_4         -0.147085
v_9         -0.206205
v_10        -0.246175
v_11        -0.275320
kilometer   -0.440519
v_3         -0.730946
Name: price, dtype: float64 
f, ax = plt.subplots(figsize = (7, 7))
plt.title("Correlation of Numeric Features with Price", y = 1, size = 16)
sns.heatmap(correlation, square = True, vmax = 0.8)
del price_numeric['price']
# 2)查看数值特征的偏度和峰值
for col in numeric_features:
    print('{:15}'.format(col),
         'Skewness:{:05.2f}'.format(Train_data[col].skew()),
         '   ',
         'Kurtosis:{:06.2f}'.format(Train_data[col].kurt())
         )
power           Skewness:65.86     Kurtosis:5733.45
kilometer       Skewness:-1.53     Kurtosis:001.14
v_0             Skewness:-1.32     Kurtosis:003.99
v_1             Skewness:00.36     Kurtosis:-01.75
v_2             Skewness:04.84     Kurtosis:023.86
v_3             Skewness:00.11     Kurtosis:-00.42
v_4             Skewness:00.37     Kurtosis:-00.20
v_5             Skewness:-4.74     Kurtosis:022.93
v_6             Skewness:00.37     Kurtosis:-01.74
v_7             Skewness:05.13     Kurtosis:025.85
v_8             Skewness:00.20     Kurtosis:-00.64
v_9             Skewness:00.42     Kurtosis:-00.32
v_10            Skewness:00.03     Kurtosis:-00.58
v_11            Skewness:03.03     Kurtosis:012.57
v_12            Skewness:00.37     Kurtosis:000.27
v_13            Skewness:00.27     Kurtosis:-00.44
v_14            Skewness:-1.19     Kurtosis:002.39
price           Skewness:03.35     Kurtosis:019.00
#3)每个数字特征的分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col = 'variable', col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, 'value')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TKhPbKwn-1585038474110)(output_61_0.png)]

可以看出匿名特征相对分布均匀

# 4)数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns], size=2, kind='scatter', diag_kind='kde')
plt.show()
# 5)多变量互相回归关系可视化

7.类别特征分析

# 1)unique分布
for fea in categorical_features:
    print(Train_data[fea].nunique())
99662
248
40
8
7
2
2
7905
categorical_features
['name',
 'model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage',
 'regionCode']

你可能感兴趣的:(数据挖掘)