datawhale 函数与lamada表达式

函数与Lambda表达式

1.函数

python把函数当成对象,可以从另一个函数中返回出来而去构建高阶函数,比如:

  • 参数是函数
  • 返回值是函数

函数的定义

  • def关键词开头,后接函数名和圆括号()
  • 冒号开始且缩进
  • return[表达式] 结束函数
def functionname(parameters):
	"函数_文档字符串"
	function_suite
	return [expression]

函数调用

def printme(str):
	print(str)
printme("我要调用") # 我要调用
printme("再次调用同一函数")  # 再次调用同一函数
temp = printme('hello') # hello
print(temp)  # None  由于没有返回值,因此为none

函数文档

def MyFirstFunction(name):
    "函数定义过程中name是形参"
    # 因为Ta只是一个形式,表示占据一个参数位置
    print('传递进来的{0}叫做实参,因为Ta是具体的参数值!'.format(name))


MyFirstFunction('老马的程序人生')  
# 传递进来的老马的程序人生叫做实参,因为Ta是具体的参数值!

print(MyFirstFunction.__doc__)  
# 函数定义过程中name是形参

help(MyFirstFunction)
# Help on function MyFirstFunction in module __main__:
# MyFirstFunction(name)
#    函数定义过程中name是形参

由上面例子可以看出:函数文档是在函数中用" "来定义的,要调用查看函数文档使用function.__doc__

函数参数

Python从简到繁的参数形态如下:

  • 位置参数(positional argument)
  • 默认参数(default argument)
  • 可变参数(variable argument)
  • 关键字参数(keyword argument)
  • 命名关键字参数 (name keyword argument)
  • 参数组合
    1. 位置参数
  • arg1 - 位置参数 ,这些参数在调用函数 (call function) 时位置要固定。
def functionname(arg1):
    "函数_文档字符串"
    function_suite
    return [expression]

2. 默认参数

  • arg2 = v - 默认参数 = 默认值,调用函数时,默认参数的值如果没有传入,则被认为是默认值。
  • 默认参数一定要放在位置参数 后面,不然程序会报错。
def functionname(arg1, arg2=v):
    "函数_文档字符串"
    function_suite
    return [expression]
  • Python 允许函数调用时参数的顺序与声明时不一致,因为 Python 解释器能够用参数名匹配参数值。
def printinfo(name, age):
    print('Name:{0},Age:{1}'.format(name, age))


printinfo(age=8, name='小马')  # Name:小马,Age:8

3. 可变参数

  • *args - 可变参数,可以是从零个到任意个,自动组装成元组
  • 加了星号(*)的变量名会存放所有未命名的变量参数。
def functionname(arg1, arg2=v, *args):
    "函数_文档字符串"
    function_suite
    return [expression]


def printinfo(arg1, *args):
    print(arg1)
    for var in args:
        print(var)

printinfo(10)  # 10
printinfo(70, 60, 50)

# 70
# 60
# 50

4. 关键字参数

  • **kw - 关键字参数,可以是从零个到任意个,自动组装成字典
def functionname(arg1, arg2=v, *args, **kw):
    "函数_文档字符串"
    function_suite
    return [expression]

def printinfo(arg1, *args, **kwargs):
    print(arg1)
    print(args)
    print(kwargs)


printinfo(70, 60, 50)
# 70
# (60, 50)
# {}
printinfo(70, 60, 50, a=1, b=2)
# 70
# (60, 50)
# {'a': 1, 'b': 2}

由此可见:可变参数关键字参数的同异总结如下:

  • 可变参数允许传入零个到任意个参数,它们在函数调用时自动组装为一个元组 (tuple)
  • 关键字参数允许传入零个到任意个参数,它们在函数内部自动组装为一个字典 (dict)

5. 命名关键字参数

  • *, nkw - 命名关键字参数,用户想要输入的关键字参数,定义方式是**在nkw 前面加个分隔符 ***。
  • 如果要限制关键字参数的名字,就可以用「命名关键字参数」
  • 使用命名关键字参数时,要特别注意不能缺少参数名
def functionname(arg1, arg2=v, *args, *, nkw, **kw):
    "函数_文档字符串"
    function_suite
    return [expression]
def printinfo(arg1, *, nkw, **kwargs):
    print(arg1)
    print(nkw)
    print(kwargs)
printinfo(70, nkw=10, a=1, b=2)
# 70
# 10
# {'a': 1, 'b': 2}
printinfo(70, 10, a=1, b=2)
# TypeError: printinfo() takes 1 positional argument but 2 were given
  • 没有写参数名nwk,因此 10 被当成「位置参数」,而原函数只有 1 个位置函数,现在调用了 2 个,因此程序会报错。

6. 参数组合
可以用位置参数、默认参数、可变参数、命名关键字参数和关键字参数,这 5 种参数中的 4 个都可以一起使用,参数定义的顺序必须是:

  • 位置参数、默认参数、可变参数和关键字参数。
  • 位置参数、默认参数、命名关键字参数和关键字参数。

要注意定义可变参数和关键字参数的语法:

  • *args 是可变参数,args 接收的是一个 tuple
  • **kw 是关键字参数,kw 接收的是一个 dict

命名关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。定义命名关键字参数不要忘了写分隔符 *,否则定义的是位置参数。

函数的返回值

def add(a, b):
    return a + b


print(add(1, 2))  # 3
print(add([1, 2, 3], [4, 5, 6]))  # [1, 2, 3, 4, 5, 6]

变量作用域

  • 定义在函数内部的变量拥有局部作用域,该变量称为局部变量。
  • 定义在函数外部的变量拥有全局作用域,该变量称为全局变量。
  • 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问。
  • 当内部作用域想修改外部作用域的变量时,就要用到globalnonlocal关键字了。
def discounts(price, rate):
    final_price = price * rate
    return final_price


old_price = float(input('请输入原价:'))  # 98
rate = float(input('请输入折扣率:'))  # 0.9
new_price = discounts(old_price, rate)
print('打折后价格是:%.2f' % new_price)  # 88.20

内嵌函数

def outer():
    print('outer函数在这被调用')

    def inner():
        print('inner函数在这被调用')

    inner()  # 该函数只能在outer函数内部被调用


outer()
# outer函数在这被调用
# inner函数在这被调用

闭包

  • 是函数式编程的一个重要的语法结构,是一种特殊的内嵌函数。
  • 如果在一个内部函数里对外层非全局作用域的变量进行引用,那么内部函数就被认为是闭包。
  • 通过闭包可以访问外层非全局作用域的变量,这个作用域称为 闭包作用域
  • 闭包的返回值通常是函数
  • 如果要修改闭包作用域中的变量则需要 nonlocal 关键字
def funX(x):
    def funY(y):
        return x * y

    return funY


i = funX(8)
print(type(i))  # 
print(i(5))  # 40
def outer():
    num = 10

    def inner():
        nonlocal num  # nonlocal关键字声明
        num = 100
        print(num)

    inner()
    print(num)


outer()

# 100
# 100

递归

  • 如果一个函数在内部调用自身本身,这个函数就是递归函数。
def factorial(n):
    if n == 1:
        return 1
    return n * fact(n - 1)


print(factorial(5)) # 120

2. Lambda 表达式

lambda 关键词定义的匿名函数

lambda argument_list: expression
  • lambda - 定义匿名函数的关键词。
  • argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
  • :- 冒号,在函数参数和表达式中间要加个冒号。
  • expression - 只是一个表达式,输入函数参数,输出一些值。

注意:

  • expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
  • 匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数。
def sqr(x):
    return x ** 2


print(sqr)
# 

y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
#  at 0x000000BABB6AC1E0>

y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]


sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20))  # 30

func = lambda *args: sum(args)
print(func(1, 2, 3, 4, 5))  # 15

匿名函数的应用

函数式编程 是指代码中每一块都是不可变的,都由纯函数的形式组成。这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。

【例子】非函数式编程

def f(x):
    for i in range(0, len(x)):
        x[i] += 10
    return x


x = [1, 2, 3]
f(x)
print(x)
# [11, 12, 13]

【例子】函数式编程

def f(x):
    y = []
    for item in x:
        y.append(item + 10)
    return y


x = [1, 2, 3]
f(x)
print(x)
# [1, 2, 3]

匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:

  • 参数是函数 (filter, map)
  • 返回值是函数 (closure)

如,在 filtermap函数中的应用:

  • filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

【例子】

odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist))  # [1, 3, 5, 7, 9]
  • map(function, *iterables) 根据提供的函数对指定序列做映射。

【例子】

m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))  
# [1, 4, 9, 16, 25]

m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))  
# [3, 7, 11, 15, 19]

除了 Python 这些内置函数,我们也可以自己定义高阶函数。

【例子】

def apply_to_list(fun, some_list):
    return fun(some_list)

lst = [1, 2, 3, 4, 5]
print(apply_to_list(sum, lst))
# 15

print(apply_to_list(len, lst))
# 5

print(apply_to_list(lambda x: sum(x) / len(x), lst))
# 3.0

你可能感兴趣的:(python入门笔记)