Docstring:
Return an object of same shape as self and whose corresponding
entries are from self where `cond` is True and otherwise are from
`other`.
#返回一个同样shape的df,当满足条件为TRUE时,从本身返回结果,否则从返回其他df的结果
Parameters
----------
cond : boolean NDFrame, array-like, or callable
Where `cond` is True, keep the original value. Where
False, replace with corresponding value from `other`.
If `cond` is callable, it is computed on the NDFrame and
should return boolean NDFrame or array. The callable must
not change input NDFrame (though pandas doesn't check it).
other : scalar, NDFrame, or callable #当cond=False时,填充的值
inplace : boolean, default False
Whether to perform the operation in place on the data
axis : alignment axis if needed, default None
level : alignment level if needed, default None
errors : str, {'raise', 'ignore'}, default 'raise'
- ``raise`` : allow exceptions to be raised
- ``ignore`` : suppress exceptions. On error return original object
try_cast : boolean, default False
try to cast the result back to the input type (if possible),
raise_on_error : boolean, default True
Whether to raise on invalid data types (e.g. trying to where on
strings)
Returns
-------
wh : same type as caller
Notes
-----
Roughly ``df1.where(m, df2)`` is equivalent to
``np.where(m, df1, df2)``.
1、pd.Series( ).where( cond ) 可以过滤不满足cond的值并赋予NaN空值
--------
s = pd.Series(range(5))
s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
2、pd.Series( ).mask(cond) 使用时,结果与where相反
s.mask(s > 0)
0 0.0
1 NaN
2 NaN
3 NaN
4 NaN
3、赋予other 值得用法
s.where(s > 1, 10) #cond = s > 1,other = 10
0 10.0
1 10.0
2 2.0
3 3.0
4 4.0
4、df.where从主体df出发,True返回df 本身的值,否则返回other的值;np.where(cond,x,y),True返回x的值,False返回y的值
df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
m = df % 3 == 0
df.where(m, -df) #cond = m,other = -df
A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
df.where(m, -df) == np.where(m, df, -df)
A B
0 True True
1 True True
2 True True
3 True True
4 True True
df.where(m, -df) == df.mask(~m, -df)
A B
0 True True
1 True True
2 True True
3 True True
4 True True
df.where(df !=N).dropna(axis = 1)