树是由根结点和若干颗子树构成的。树是由一个集合以及在该集合上定义的一种关系构成的。集合中的元素称为树的结点,所定义的关系称为父子关系。父子关系在树的结点之间建立了一个层次结构。在这种层次结构中有一个结点具有特殊的地位,这个结点称为该树的根结点,或称为树根。
根节点:树中最顶部的元素
父节点:处了根节点都有父节点,每个节点最多只有一个父节点
孩子节点:一个父节点具有0个或多个孩子节点
兄弟节点:同一个父节点的孩子节点之间是兄弟关系
外部节点:一个没有孩子的节点称为外部节点,也叫叶子结点
内部节点:有一个或多个孩子节点的节点叫做内部节点
树的边:指一对节点(u,v),其中u是v的父节点或者v是u的父节点
树的路径:一系列连续的边组成了一条路径
节点的深度:节点的深度就是该节点的祖先的个数,不包括该节点本身,如果根节点的层数为1,则深度即为该节点的层数-1
节点的高度:如果p是树中的叶子节点,那么它的高度为0.否则p的高度是它的孩子节点中的最大高度+1
有序树:每个孩子之间有一定的顺序,例如:
class Tree():
"""
树的抽象基类
"""
# 叫做位置的内嵌类,用于封装节点
class Position():
def element(self):
raise NotImplementedError('must be implemented by subclass')
def __eq__(self, other):
raise NotImplementedError('must be implemented by subclass')
def root(self):
"""
return 根节点的position
"""
raise NotImplementedError('must be implemented by subclass')
def parent(self,p):
"""
:param p:一个位置对象
:return: 返回p的父节点的position对象,如果p是根节点则饭后空
"""
raise NotImplementedError('must be implemented by subclass')
def num_children(self,p):
"""
:param p:一个位置对象
:return: 返回该位置的孩子节点的数量
"""
raise NotImplementedError('must be implemented by subclass')
def children(self,p):
"""
:param p: 一个位置对象
:return: 返回位置p的孩子的迭代
"""
raise NotImplementedError('must be implemented by subclass')
def __len__(self):
"""
:return: 返回整个树的节点个数
"""
raise NotImplementedError('must be implemented by subclass')
def is_root(self,p):
return self.root() == p
def is_leaf(self,p):
return self.num_children(p) == 0
def is_empty(self):
return len(self) == 0
这个抽象类中的方法必须在子类中实现才能调用,不然会产生NotImplementedError(‘must be implemented by subclass’)的异常
除此之外,对于Position()这个内嵌类可能较难理解,为什么要有这么一个内嵌类
这个内嵌类目前也是抽象类,具体方法都没有实现,但使用它的目的已经有了,就是将树中的节点进行封装,那为什么要封装节点呢?当调用树的相关方法时,节点可能为一个必要的参数,但我们手动传入时,实际上可以是任意的对象,这就会导致错误发生,所以我们必须保证传入的节点是节点的对象,同时也是本树对象的节点,不然就会弄混树与树的节点。同时将节点进行封装,可以避免使用者直接使用节点对象本身,相关节点的方法可以在封装成的Position对象调用。目前只是抽象类的定义,节点类等其他方法还未定义,后面还会看到具体的position对象的使用。
目前有了Tree这个抽象类,虽然其中的大多数方法还是抽象方法,但使用这些方法已经可以构成一些其他的功能了,所以就有了is_root,is_leaf,is_empty方法的定义。同时还可以定义计算节点的深度与高度的方法:
def depth(self,p):
"""
计算节点在树中的深度
"""
if self.is_root(p):
return 0
else:
return 1 + self.depth(self.parent(p))
def height(self,p):
"""
计算节点在树中的深度
"""
if self.is_leaf(p):
return 0
else:
return 1 + max(self.height(c) for c in self.children(p))
我们现在介绍一种树的特殊化形式二叉树
二叉树的特点:
每个父节点最多只有两个孩子节点
两个孩子节点又叫做左孩子和右孩子
以左孩子为根节点形成的树叫做左子树,以右孩子为根节点形成的树叫做右子树
如果除了最下面的一层节点,其余节点组成的是一颗满二叉树,并且最下面的这层节点遵循从左到右依次添加的顺序,那么这个树就叫做完全二叉树
非空完全二叉树中,外部节点数=内部节点数+1
二叉树的实现可以以继承树的抽象类的方式实现:
class BinaryTree(Tree):
class Node():
def __init__(self, element, parent=None, left=None, right=None):
self.element = element
self.parent = parent
self.left = left
self.right = right
class Position(Tree.Position):
def __init__(self, container, node):
self.container = container
self.node = node
def element(self):
return self.node.element
def __eq__(self, other):
return isinstance(other, type(self)) and other.node is self.node
def validate(self, p):
"""
进行位置验证
"""
if not isinstance(p, self.Position):
raise TypeError('p must be proper Position type')
if p.container is not self:
raise ValueError('p does not belong to this container')
if p.node.parent is p.node:
raise ValueError('p is no longer valid')
return p.node
def make_position(self, node):
"""
封装节点
"""
return self.Position(self, node) if node is not None else None
def __init__(self):
self._root = None
self.size = 0
def __len__(self):
return self.size
def root(self):
return self.make_position(self._root)
def parent(self, p):
node = self.validate(p)
return self.make_position(node.parent)
def left(self, p):
node = self.validate(p)
return self.make_position(node.left)
def right(self, p):
node = self.validate(p)
return self.make_position(node.right)
def sibling(self, p):
parent = self.parent(p)
if parent is None:
return None
else:
if p == self.left(parent):
return self.right(parent)
else:
return self.left(parent)
def num_children(self, p):
node = self.validate(p)
count = 0
if node.left is not None:
count += 1
if node.right is not None:
count += 1
return count
def children(self,p):
if self.left(p) is not None:
yield self.left(p)
if self.right(p) is not None:
yield self.right(p)
代码中将之前的抽象方法进行了完整的定义,同时添加了validate与make_position方法。validate方法用于对传入的position参数进行验证,make_position方法用于将节点进行封装。除此之外还添加了二叉树特有的方法right,left和sibling,left与right分别返回节点的左孩子节点与右孩子节点,sibling返回的是节点的兄弟节点。
目前的二叉树的数据结构只是创建了一颗空树,我们接下来要加入的是对二叉树进行更新操作的方法
def add_root(self, e):
if self._root is not None:
raise ValueError('Root exists')
self.size += 1
self._root = self.Node(e)
return self.make_position(self._root)
def add_left(self, e, p):
node = self.validate(p)
if node.left is not None:
raise ValueError('Left child exists')
self.size += 1
node.left = self.Node(e, node)
return self.make_position(node.left)
def add_right(self, e, p):
node = self.validate(p)
if node.right is not None:
raise ValueError('Left child exists')
self.size += 1
node.right = self.Node(e, node)
return self.make_position(node.right)
def replace(self, p, e):
node = self.validate(p)
old = node.element
node.element = e
return old
def delete(self, p):
"""
删除该位置的节点,如果该节点有两个孩子,则会产生异常,如果只有一个孩子,
则使其孩子代替该节点与其双亲节点连接
"""
node = self.validate(p)
if self.num_children(p) == 2:
raise ValueError('p has two children')
child = node.left if node.left else node.right
if child is not None:
child.parent = node.parent
if node is self._root:
self._root = child
else:
parent = node.parent
if node is parent.left:
parent.left = child
else:
parent.right = child
self.size -= 1
node.parent = node
return node.element
总共加入了添加根节点,添加左孩子,添加右孩子,代替元素和删除节点5个方法,其中删除几点稍微有一些复杂,因为涉及到许多情况的判断。
到现在,一个完整的二叉树数据结构基本完成了。
但是我们还需要掌握一个算法,就是树的遍历算法
树的遍历一般有先序遍历,后序遍历,广度优先遍历(层序遍历),对于二叉树还有中序遍历
先序遍历是按照根节点->从左到右的孩子节点的顺序遍历,而且把每个孩子节点看作是子树的根节点同样如此,例如:
用python实现先序遍历为:
def preorder(self,p):
"""
先序遍历节点p为根节点的树
"""
yield p
for c in self.children(p):
for other in self.preorder(c):
yield other
虽然代码只有4行,但理解起来却不是很容易的,首先该方法是一个生成器,所以通过yield返回一个可迭代对象,也就是可以for循环该方法,由于是先序遍历,所以要先yield p,之后便要返回孩子节点,由于孩子节点可能还具有孩子,所以并不能只返回孩子节点,应该返回以孩子节点为根节点的树的所有节点,而要想for循环得到左右的孩子节点为根节点的所有节点,还需要调用孩子节点的先序遍历方法才能得到。总而言之,代码理解的难度还是由于递归算法造成的,一个复杂的递归终归还是不是那么容易就能看出来的。
后序遍历是按照先从左到右孩子节点->根节点,如图:
用python实现:
def postorder(self,p):
"""
后序遍历节点p为根的树
"""
for c in self.children(p):
for other in self.postorder(c):
yield other
yield p
理解与先序遍历相同
广度优先遍历也叫层序遍历,一层一层的遍历,如图:
用python实现:
def breadthfirst(self):
if not self.is_empty():
queue = Queue()
queue.enqueue(self.root())
while not queue.is_empty():
p = queue.dequeue()
yield p
for i in self.children(p):
queue.enqueue(i)
对于二叉树,遍历顺序为左孩子->父节点->右孩子
python实现为:
def inorder(self,p):
if self.left(p) is not None:
for other in self.inorder(self.left(p)):
yield other
if self.right(p) is not None:
for other in self.inorder(self.right(p)):
yield other
参考《数据结构与算法Python语言实现》