C++提高编程(超详细版)

# C++提高编程



* 本阶段主要针对C++==泛型编程==和==STL==技术做详细讲解,探讨C++更深层的使用





## 1 模板

### 1.1 模板的概念



模板就是建立**通用的模具**,大大**提高复用性**



例如生活中的模板



一寸照片模板:



![1547105026929](assets/1547105026929.png)



PPT模板:

![1547103297864](assets/1547103297864.png)



![1547103359158](assets/1547103359158.png)





模板的特点:

* 模板不可以直接使用,它只是一个框架
* 模板的通用并不是万能的









### 1.2 函数模板



* C++另一种编程思想称为 ==泛型编程== ,主要利用的技术就是模板


* C++提供两种模板机制:**函数模板**和**类模板** 



#### 1.2.1 函数模板语法

函数模板作用:

建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个**虚拟的类型**来代表。



**语法:** 

```C++
template
函数声明或定义
```

**解释:**

template  ---  声明创建模板

typename  --- 表面其后面的符号是一种数据类型,可以用class代替

T    ---   通用的数据类型,名称可以替换,通常为大写字母



**示例:**

```C++

//交换整型函数
void swapInt(int& a, int& b) {
	int temp = a;
	a = b;
	b = temp;
}

//交换浮点型函数
void swapDouble(double& a, double& b) {
	double temp = a;
	a = b;
	b = temp;
}

//利用模板提供通用的交换函数
template
void mySwap(T& a, T& b)
{
	T temp = a;
	a = b;
	b = temp;
}

void test01()
{
	int a = 10;
	int b = 20;
	
	//swapInt(a, b);

	//利用模板实现交换
	//1、自动类型推导
	mySwap(a, b);

	//2、显示指定类型
	mySwap(a, b);

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 函数模板利用关键字 template
* 使用函数模板有两种方式:自动类型推导、显示指定类型
* 模板的目的是为了提高复用性,将类型参数化









#### 1.2.2 函数模板注意事项

注意事项:

* 自动类型推导,必须推导出一致的数据类型T,才可以使用


* 模板必须要确定出T的数据类型,才可以使用



**示例:**

```C++
//利用模板提供通用的交换函数
template
void mySwap(T& a, T& b)
{
	T temp = a;
	a = b;
	b = temp;
}


// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{
	int a = 10;
	int b = 20;
	char c = 'c';

	mySwap(a, b); // 正确,可以推导出一致的T
	//mySwap(a, c); // 错误,推导不出一致的T类型
}


// 2、模板必须要确定出T的数据类型,才可以使用
template
void func()
{
	cout << "func 调用" << endl;
}

void test02()
{
	//func(); //错误,模板不能独立使用,必须确定出T的类型
	func(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}

int main() {

	test01();
	test02();

	system("pause");

	return 0;
}
```

总结:

* 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型











#### 1.2.3 函数模板案例

案例描述:

* 利用函数模板封装一个排序的函数,可以对**不同数据类型数组**进行排序
* 排序规则从大到小,排序算法为**选择排序**
* 分别利用**char数组**和**int数组**进行测试



示例:

```C++
//交换的函数模板
template
void mySwap(T &a, T&b)
{
	T temp = a;
	a = b;
	b = temp;
}


template // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{
	for (int i = 0; i < len; i++)
	{
		int max = i; //最大数的下标
		for (int j = i + 1; j < len; j++)
		{
			if (arr[max] < arr[j])
			{
				max = j;
			}
		}
		if (max != i) //如果最大数的下标不是i,交换两者
		{
			mySwap(arr[max], arr[i]);
		}
	}
}
template
void printArray(T arr[], int len) {

	for (int i = 0; i < len; i++) {
		cout << arr[i] << " ";
	}
	cout << endl;
}
void test01()
{
	//测试char数组
	char charArr[] = "bdcfeagh";
	int num = sizeof(charArr) / sizeof(char);
	mySort(charArr, num);
	printArray(charArr, num);
}

void test02()
{
	//测试int数组
	int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };
	int num = sizeof(intArr) / sizeof(int);
	mySort(intArr, num);
	printArray(intArr, num);
}

int main() {

	test01();
	test02();

	system("pause");

	return 0;
}
```

总结:模板可以提高代码复用,需要熟练掌握











#### 1.2.4 普通函数与函数模板的区别



**普通函数与函数模板区别:**

* 普通函数调用时可以发生自动类型转换(隐式类型转换)
* 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
* 如果利用显示指定类型的方式,可以发生隐式类型转换



**示例:**

```C++
//普通函数
int myAdd01(int a, int b)
{
	return a + b;
}

//函数模板
template
T myAdd02(T a, T b)  
{
	return a + b;
}

//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{
	int a = 10;
	int b = 20;
	char c = 'c';
	
	cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型  'c' 对应 ASCII码 99

	//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换

	myAdd02(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T











#### 1.2.5 普通函数与函数模板的调用规则



调用规则如下:

1. 如果函数模板和普通函数都可以实现,优先调用普通函数
2. 可以通过空模板参数列表来强制调用函数模板
3. 函数模板也可以发生重载
4. 如果函数模板可以产生更好的匹配,优先调用函数模板





**示例:**

```C++
//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
	cout << "调用的普通函数" << endl;
}

template
void myPrint(T a, T b) 
{ 
	cout << "调用的模板" << endl;
}

template
void myPrint(T a, T b, T c) 
{ 
	cout << "调用重载的模板" << endl; 
}

void test01()
{
	//1、如果函数模板和普通函数都可以实现,优先调用普通函数
	// 注意 如果告诉编译器  普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
	int a = 10;
	int b = 20;
	myPrint(a, b); //调用普通函数

	//2、可以通过空模板参数列表来强制调用函数模板
	myPrint<>(a, b); //调用函数模板

	//3、函数模板也可以发生重载
	int c = 30;
	myPrint(a, b, c); //调用重载的函数模板

	//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
	char c1 = 'a';
	char c2 = 'b';
	myPrint(c1, c2); //调用函数模板
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性











#### 1.2.6 模板的局限性

**局限性:**

* 模板的通用性并不是万能的



**例如:**

```C++
	template
	void f(T a, T b)
	{ 
    	a = b;
    }
```

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了



再例如:

```C++
	template
	void f(T a, T b)
	{ 
    	if(a > b) { ... }
    }
```

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行



因此C++为了解决这种问题,提供模板的重载,可以为这些**特定的类型**提供**具体化的模板**



**示例:**

```C++
#include
using namespace std;

#include 

class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	string m_Name;
	int m_Age;
};

//普通函数模板
template
bool myCompare(T& a, T& b)
{
	if (a == b)
	{
		return true;
	}
	else
	{
		return false;
	}
}


//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{
	if ( p1.m_Name  == p2.m_Name && p1.m_Age == p2.m_Age)
	{
		return true;
	}
	else
	{
		return false;
	}
}

void test01()
{
	int a = 10;
	int b = 20;
	//内置数据类型可以直接使用通用的函数模板
	bool ret = myCompare(a, b);
	if (ret)
	{
		cout << "a == b " << endl;
	}
	else
	{
		cout << "a != b " << endl;
	}
}

void test02()
{
	Person p1("Tom", 10);
	Person p2("Tom", 10);
	//自定义数据类型,不会调用普通的函数模板
	//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
	bool ret = myCompare(p1, p2);
	if (ret)
	{
		cout << "p1 == p2 " << endl;
	}
	else
	{
		cout << "p1 != p2 " << endl;
	}
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}
```

总结:

* 利用具体化的模板,可以解决自定义类型的通用化
* 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板









### 1.3 类模板

#### 1.3.1 类模板语法

类模板作用:

* 建立一个通用类,类中的成员 数据类型可以不具体制定,用一个**虚拟的类型**来代表。



**语法:** 

```c++
template
类
```

**解释:**

template  ---  声明创建模板

typename  --- 表面其后面的符号是一种数据类型,可以用class代替

T    ---   通用的数据类型,名称可以替换,通常为大写字母



**示例:**

```C++
#include 
//类模板
template 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}
public:
	NameType mName;
	AgeType mAge;
};

void test01()
{
	// 指定NameType 为string类型,AgeType 为 int类型
	PersonP1("孙悟空", 999);
	P1.showPerson();
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:类模板和函数模板语法相似,在声明模板template后面加类,此类称为类模板











#### 1.3.2 类模板与函数模板区别



类模板与函数模板区别主要有两点:

1. 类模板没有自动类型推导的使用方式
2. 类模板在模板参数列表中可以有默认参数




**示例:**

```C++
#include 
//类模板
template 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}
public:
	NameType mName;
	AgeType mAge;
};

//1、类模板没有自动类型推导的使用方式
void test01()
{
	// Person p("孙悟空", 1000); // 错误 类模板使用时候,不可以用自动类型推导
	Person p("孙悟空", 1000); //必须使用显示指定类型的方式,使用类模板
	p.showPerson();
}

//2、类模板在模板参数列表中可以有默认参数
void test02()
{
	Person  p("猪八戒", 999); //类模板中的模板参数列表 可以指定默认参数
	p.showPerson();
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}
```

总结:

* 类模板使用只能用显示指定类型方式
* 类模板中的模板参数列表可以有默认参数











#### 1.3.3 类模板中成员函数创建时机



类模板中成员函数和普通类中成员函数创建时机是有区别的:

* 普通类中的成员函数一开始就可以创建
* 类模板中的成员函数在调用时才创建





**示例:**

```C++
class Person1
{
public:
	void showPerson1()
	{
		cout << "Person1 show" << endl;
	}
};

class Person2
{
public:
	void showPerson2()
	{
		cout << "Person2 show" << endl;
	}
};

template
class MyClass
{
public:
	T obj;

	//类模板中的成员函数,并不是一开始就创建的,而是在模板调用时再生成

	void fun1() { obj.showPerson1(); }
	void fun2() { obj.showPerson2(); }

};

void test01()
{
	MyClass m;
	
	m.fun1();

	//m.fun2();//编译会出错,说明函数调用才会去创建成员函数
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:类模板中的成员函数并不是一开始就创建的,在调用时才去创建









#### 1.3.4 类模板对象做函数参数

学习目标:

* 类模板实例化出的对象,向函数传参的方式



一共有三种传入方式:

1. 指定传入的类型   --- 直接显示对象的数据类型
2. 参数模板化           --- 将对象中的参数变为模板进行传递
3. 整个类模板化       --- 将这个对象类型 模板化进行传递





**示例:**

```C++
#include 
//类模板
template 
class Person
{
public:
	Person(NameType name, AgeType age)
	{
		this->mName = name;
		this->mAge = age;
	}
	void showPerson()
	{
		cout << "name: " << this->mName << " age: " << this->mAge << endl;
	}
public:
	NameType mName;
	AgeType mAge;
};

//1、指定传入的类型
void printPerson1(Person &p) 
{
	p.showPerson();
}
void test01()
{
	Person p("孙悟空", 100);
	printPerson1(p);
}

//2、参数模板化
template 
void printPerson2(Person&p)
{
	p.showPerson();
	cout << "T1的类型为: " << typeid(T1).name() << endl;
	cout << "T2的类型为: " << typeid(T2).name() << endl;
}
void test02()
{
	Person p("猪八戒", 90);
	printPerson2(p);
}

//3、整个类模板化
template
void printPerson3(T & p)
{
	cout << "T的类型为: " << typeid(T).name() << endl;
	p.showPerson();

}
void test03()
{
	Person p("唐僧", 30);
	printPerson3(p);
}

int main() {

	test01();
	test02();
	test03();

	system("pause");

	return 0;
}
```

总结:

* 通过类模板创建的对象,可以有三种方式向函数中进行传参
* 使用比较广泛是第一种:指定传入的类型









#### 1.3.5 类模板与继承



当类模板碰到继承时,需要注意一下几点:

* 当子类继承的父类是一个类模板时,子类在声明的时候,要指定出父类中T的类型
* 如果不指定,编译器无法给子类分配内存
* 如果想灵活指定出父类中T的类型,子类也需变为类模板




**示例:**

```C++
template
class Base
{
	T m;
};

//class Son:public Base  //错误,c++编译需要给子类分配内存,必须知道父类中T的类型才可以向下继承
class Son :public Base //必须指定一个类型
{
};
void test01()
{
	Son c;
}

//类模板继承类模板 ,可以用T2指定父类中的T类型
template
class Son2 :public Base
{
public:
	Son2()
	{
		cout << typeid(T1).name() << endl;
		cout << typeid(T2).name() << endl;
	}
};

void test02()
{
	Son2 child1;
}


int main() {

	test01();

	test02();

	system("pause");

	return 0;
}
```

总结:如果父类是类模板,子类需要指定出父类中T的数据类型









#### 1.3.6 类模板成员函数类外实现



学习目标:能够掌握类模板中的成员函数类外实现



**示例:**

```C++
#include 

//类模板中成员函数类外实现
template
class Person {
public:
	//成员函数类内声明
	Person(T1 name, T2 age);
	void showPerson();

public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template
Person::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template
void Person::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}

void test01()
{
	Person p("Tom", 20);
	p.showPerson();
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:类模板中成员函数类外实现时,需要加上模板参数列表









#### 1.3.7 类模板分文件编写

学习目标:

* 掌握类模板成员函数分文件编写产生的问题以及解决方式



问题:

* 类模板中成员函数创建时机是在调用阶段,导致分文件编写时链接不到


解决:

* 解决方式1:直接包含.cpp源文件
* 解决方式2:将声明和实现写到同一个文件中,并更改后缀名为.hpp,hpp是约定的名称,并不是强制




**示例:**

person.hpp中代码:

```C++
#pragma once
#include 
using namespace std;
#include 

template
class Person {
public:
	Person(T1 name, T2 age);
	void showPerson();
public:
	T1 m_Name;
	T2 m_Age;
};

//构造函数 类外实现
template
Person::Person(T1 name, T2 age) {
	this->m_Name = name;
	this->m_Age = age;
}

//成员函数 类外实现
template
void Person::showPerson() {
	cout << "姓名: " << this->m_Name << " 年龄:" << this->m_Age << endl;
}
```



类模板分文件编写.cpp中代码

```C++
#include
using namespace std;

//#include "person.h"
#include "person.cpp" //解决方式1,包含cpp源文件

//解决方式2,将声明和实现写到一起,文件后缀名改为.hpp
#include "person.hpp"
void test01()
{
	Person p("Tom", 10);
	p.showPerson();
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:主流的解决方式是第二种,将类模板成员函数写到一起,并将后缀名改为.hpp









#### 1.3.8 类模板与友元



学习目标:

* 掌握类模板配合友元函数的类内和类外实现



全局函数类内实现 - 直接在类内声明友元即可

全局函数类外实现 - 需要提前让编译器知道全局函数的存在



**示例:**

```C++
#include 

//2、全局函数配合友元  类外实现 - 先做函数模板声明,下方在做函数模板定义,在做友元
template class Person;

//如果声明了函数模板,可以将实现写到后面,否则需要将实现体写到类的前面让编译器提前看到
//template void printPerson2(Person & p); 

template
void printPerson2(Person & p)
{
	cout << "类外实现 ---- 姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
}

template
class Person
{
	//1、全局函数配合友元   类内实现
	friend void printPerson(Person & p)
	{
		cout << "姓名: " << p.m_Name << " 年龄:" << p.m_Age << endl;
	}


	//全局函数配合友元  类外实现
	friend void printPerson2<>(Person & p);

public:

	Person(T1 name, T2 age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}


private:
	T1 m_Name;
	T2 m_Age;

};

//1、全局函数在类内实现
void test01()
{
	Person p("Tom", 20);
	printPerson(p);
}


//2、全局函数在类外实现
void test02()
{
	Person p("Jerry", 30);
	printPerson2(p);
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

总结:建议全局函数做类内实现,用法简单,而且编译器可以直接识别











#### 1.3.9 类模板案例

案例描述:  实现一个通用的数组类,要求如下:



* 可以对内置数据类型以及自定义数据类型的数据进行存储
* 将数组中的数据存储到堆区
* 构造函数中可以传入数组的容量
* 提供对应的拷贝构造函数以及operator=防止浅拷贝问题
* 提供尾插法和尾删法对数组中的数据进行增加和删除
* 可以通过下标的方式访问数组中的元素
* 可以获取数组中当前元素个数和数组的容量





**示例:**

myArray.hpp中代码

```C++
#pragma once
#include 
using namespace std;

template
class MyArray
{
public:
    
	//构造函数
	MyArray(int capacity)
	{
		this->m_Capacity = capacity;
		this->m_Size = 0;
		pAddress = new T[this->m_Capacity];
	}

	//拷贝构造
	MyArray(const MyArray & arr)
	{
		this->m_Capacity = arr.m_Capacity;
		this->m_Size = arr.m_Size;
		this->pAddress = new T[this->m_Capacity];
		for (int i = 0; i < this->m_Size; i++)
		{
			//如果T为对象,而且还包含指针,必须需要重载 = 操作符,因为这个等号不是 构造 而是赋值,
			// 普通类型可以直接= 但是指针类型需要深拷贝
			this->pAddress[i] = arr.pAddress[i];
		}
	}

	//重载= 操作符  防止浅拷贝问题
	MyArray& operator=(const MyArray& myarray) {

		if (this->pAddress != NULL) {
			delete[] this->pAddress;
			this->m_Capacity = 0;
			this->m_Size = 0;
		}

		this->m_Capacity = myarray.m_Capacity;
		this->m_Size = myarray.m_Size;
		this->pAddress = new T[this->m_Capacity];
		for (int i = 0; i < this->m_Size; i++) {
			this->pAddress[i] = myarray[i];
		}
		return *this;
	}

	//重载[] 操作符  arr[0]
	T& operator [](int index)
	{
		return this->pAddress[index]; //不考虑越界,用户自己去处理
	}

	//尾插法
	void Push_back(const T & val)
	{
		if (this->m_Capacity == this->m_Size)
		{
			return;
		}
		this->pAddress[this->m_Size] = val;
		this->m_Size++;
	}

	//尾删法
	void Pop_back()
	{
		if (this->m_Size == 0)
		{
			return;
		}
		this->m_Size--;
	}

	//获取数组容量
	int getCapacity()
	{
		return this->m_Capacity;
	}

	//获取数组大小
	int	getSize()
	{
		return this->m_Size;
	}


	//析构
	~MyArray()
	{
		if (this->pAddress != NULL)
		{
			delete[] this->pAddress;
			this->pAddress = NULL;
			this->m_Capacity = 0;
			this->m_Size = 0;
		}
	}

private:
	T * pAddress;  //指向一个堆空间,这个空间存储真正的数据
	int m_Capacity; //容量
	int m_Size;   // 大小
};
```



类模板案例—数组类封装.cpp中

```C++
#include "myArray.hpp"
#include 

void printIntArray(MyArray& arr) {
	for (int i = 0; i < arr.getSize(); i++) {
		cout << arr[i] << " ";
	}
	cout << endl;
}

//测试内置数据类型
void test01()
{
	MyArray array1(10);
	for (int i = 0; i < 10; i++)
	{
		array1.Push_back(i);
	}
	cout << "array1打印输出:" << endl;
	printIntArray(array1);
	cout << "array1的大小:" << array1.getSize() << endl;
	cout << "array1的容量:" << array1.getCapacity() << endl;

	cout << "--------------------------" << endl;

	MyArray array2(array1);
	array2.Pop_back();
	cout << "array2打印输出:" << endl;
	printIntArray(array2);
	cout << "array2的大小:" << array2.getSize() << endl;
	cout << "array2的容量:" << array2.getCapacity() << endl;
}

//测试自定义数据类型
class Person {
public:
	Person() {} 
		Person(string name, int age) {
		this->m_Name = name;
		this->m_Age = age;
	}
public:
	string m_Name;
	int m_Age;
};

void printPersonArray(MyArray& personArr)
{
	for (int i = 0; i < personArr.getSize(); i++) {
		cout << "姓名:" << personArr[i].m_Name << " 年龄: " << personArr[i].m_Age << endl;
	}

}

void test02()
{
	//创建数组
	MyArray pArray(10);
	Person p1("孙悟空", 30);
	Person p2("韩信", 20);
	Person p3("妲己", 18);
	Person p4("王昭君", 15);
	Person p5("赵云", 24);

	//插入数据
	pArray.Push_back(p1);
	pArray.Push_back(p2);
	pArray.Push_back(p3);
	pArray.Push_back(p4);
	pArray.Push_back(p5);

	printPersonArray(pArray);

	cout << "pArray的大小:" << pArray.getSize() << endl;
	cout << "pArray的容量:" << pArray.getCapacity() << endl;

}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

总结:

能够利用所学知识点实现通用的数组





## 2 STL初识

### 2.1 STL的诞生



* 长久以来,软件界一直希望建立一种可重复利用的东西

* C++的**面向对象**和**泛型编程**思想,目的就是**复用性的提升**

* 大多情况下,数据结构和算法都未能有一套标准,导致被迫从事大量重复工作

* 为了建立数据结构和算法的一套标准,诞生了**STL**

  ​


### 2.2 STL基本概念



* STL(Standard Template Library,**标准模板库**)
* STL 从广义上分为: **容器(container) 算法(algorithm) 迭代器(iterator)**
* **容器**和**算法**之间通过**迭代器**进行无缝连接。
* STL 几乎所有的代码都采用了模板类或者模板函数





### 2.3 STL六大组件

STL大体分为六大组件,分别是:**容器、算法、迭代器、仿函数、适配器(配接器)、空间配置器**



1. 容器:各种数据结构,如vector、list、deque、set、map等,用来存放数据。
2. 算法:各种常用的算法,如sort、find、copy、for_each等
3. 迭代器:扮演了容器与算法之间的胶合剂。
4. 仿函数:行为类似函数,可作为算法的某种策略。
5. 适配器:一种用来修饰容器或者仿函数或迭代器接口的东西。
6. 空间配置器:负责空间的配置与管理。





### 2.4  STL中容器、算法、迭代器



**容器:**置物之所也

STL**容器**就是将运用**最广泛的一些数据结构**实现出来

常用的数据结构:数组, 链表,树, 栈, 队列, 集合, 映射表 等

这些容器分为**序列式容器**和**关联式容器**两种:

​	**序列式容器**:强调值的排序,序列式容器中的每个元素均有固定的位置。
	**关联式容器**:二叉树结构,各元素之间没有严格的物理上的顺序关系



**算法:**问题之解法也

有限的步骤,解决逻辑或数学上的问题,这一门学科我们叫做算法(Algorithms)

算法分为:**质变算法**和**非质变算法**。

质变算法:是指运算过程中会更改区间内的元素的内容。例如拷贝,替换,删除等等

非质变算法:是指运算过程中不会更改区间内的元素内容,例如查找、计数、遍历、寻找极值等等



**迭代器:**容器和算法之间粘合剂

提供一种方法,使之能够依序寻访某个容器所含的各个元素,而又无需暴露该容器的内部表示方式。

每个容器都有自己专属的迭代器

迭代器使用非常类似于指针,初学阶段我们可以先理解迭代器为指针



迭代器种类:

| 种类           | 功能                                                     | 支持运算                                |
| -------------- | -------------------------------------------------------- | --------------------------------------- |
| 输入迭代器     | 对数据的只读访问                                         | 只读,支持++、==、!=                   |
| 输出迭代器     | 对数据的只写访问                                         | 只写,支持++                            |
| 前向迭代器     | 读写操作,并能向前推进迭代器                             | 读写,支持++、==、!=                   |
| 双向迭代器     | 读写操作,并能向前和向后操作                             | 读写,支持++、--,                      |
| 随机访问迭代器 | 读写操作,可以以跳跃的方式访问任意数据,功能最强的迭代器 | 读写,支持++、--、[n]、-n、<、<=、>、>= |

常用的容器中迭代器种类为双向迭代器,和随机访问迭代器







### 2.5 容器算法迭代器初识



了解STL中容器、算法、迭代器概念之后,我们利用代码感受STL的魅力

STL中最常用的容器为Vector,可以理解为数组,下面我们将学习如何向这个容器中插入数据、并遍历这个容器



#### 2.5.1 vector存放内置数据类型



容器:     `vector`

算法:     `for_each`

迭代器: `vector::iterator`



**示例:**

```C++
#include 
#include 

void MyPrint(int val)
{
	cout << val << endl;
}

void test01() {

	//创建vector容器对象,并且通过模板参数指定容器中存放的数据的类型
	vector v;
	//向容器中放数据
	v.push_back(10);
	v.push_back(20);
	v.push_back(30);
	v.push_back(40);

	//每一个容器都有自己的迭代器,迭代器是用来遍历容器中的元素
	//v.begin()返回迭代器,这个迭代器指向容器中第一个数据
	//v.end()返回迭代器,这个迭代器指向容器元素的最后一个元素的下一个位置
	//vector::iterator 拿到vector这种容器的迭代器类型

	vector::iterator pBegin = v.begin();
	vector::iterator pEnd = v.end();

	//第一种遍历方式:
	while (pBegin != pEnd) {
		cout << *pBegin << endl;
		pBegin++;
	}

	
	//第二种遍历方式:
	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << endl;
	}
	cout << endl;

	//第三种遍历方式:
	//使用STL提供标准遍历算法  头文件 algorithm
	for_each(v.begin(), v.end(), MyPrint);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```



#### 2.5.2 Vector存放自定义数据类型



学习目标:vector中存放自定义数据类型,并打印输出



**示例:**

```c++
#include 
#include 

//自定义数据类型
class Person {
public:
	Person(string name, int age) {
		mName = name;
		mAge = age;
	}
public:
	string mName;
	int mAge;
};
//存放对象
void test01() {

	vector v;

	//创建数据
	Person p1("aaa", 10);
	Person p2("bbb", 20);
	Person p3("ccc", 30);
	Person p4("ddd", 40);
	Person p5("eee", 50);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);
	v.push_back(p5);

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << "Name:" << (*it).mName << " Age:" << (*it).mAge << endl;

	}
}


//放对象指针
void test02() {

	vector v;

	//创建数据
	Person p1("aaa", 10);
	Person p2("bbb", 20);
	Person p3("ccc", 30);
	Person p4("ddd", 40);
	Person p5("eee", 50);

	v.push_back(&p1);
	v.push_back(&p2);
	v.push_back(&p3);
	v.push_back(&p4);
	v.push_back(&p5);

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		Person * p = (*it);
		cout << "Name:" << p->mName << " Age:" << (*it)->mAge << endl;
	}
}


int main() {

	test01();
    
	test02();

	system("pause");

	return 0;
}
```



#### 2.5.3 Vector容器嵌套容器



学习目标:容器中嵌套容器,我们将所有数据进行遍历输出



**示例:**

```C++
#include 

//容器嵌套容器
void test01() {

	vector< vector >  v;

	vector v1;
	vector v2;
	vector v3;
	vector v4;

	for (int i = 0; i < 4; i++) {
		v1.push_back(i + 1);
		v2.push_back(i + 2);
		v3.push_back(i + 3);
		v4.push_back(i + 4);
	}

	//将容器元素插入到vector v中
	v.push_back(v1);
	v.push_back(v2);
	v.push_back(v3);
	v.push_back(v4);


	for (vector>::iterator it = v.begin(); it != v.end(); it++) {

		for (vector::iterator vit = (*it).begin(); vit != (*it).end(); vit++) {
			cout << *vit << " ";
		}
		cout << endl;
	}

}

int main() {

	test01();

	system("pause");

	return 0;
}
```





## 3 STL- 常用容器

### 3.1 string容器



#### 3.1.1 string基本概念

**本质:**

* string是C++风格的字符串,而string本质上是一个类



**string和char * 区别:**

* char * 是一个指针
* string是一个类,类内部封装了char\*,管理这个字符串,是一个char*型的容器。



**特点:**

string 类内部封装了很多成员方法

例如:查找find,拷贝copy,删除delete 替换replace,插入insert

string管理char*所分配的内存,不用担心复制越界和取值越界等,由类内部进行负责



#### 3.1.2 string构造函数

构造函数原型:

* `string();`          				//创建一个空的字符串 例如: string str;
	 `string(const char* s);`	        //使用字符串s初始化
* `string(const string& str);`    //使用一个string对象初始化另一个string对象
* `string(int n, char c);`           //使用n个字符c初始化 



**示例:**

```C++
#include 
//string构造
void test01()
{
	string s1; //创建空字符串,调用无参构造函数
	cout << "str1 = " << s1 << endl;

	const char* str = "hello world";
	string s2(str); //把c_string转换成了string

	cout << "str2 = " << s2 << endl;

	string s3(s2); //调用拷贝构造函数
	cout << "str3 = " << s3 << endl;

	string s4(10, 'a');
	cout << "str3 = " << s3 << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:string的多种构造方式没有可比性,灵活使用即可









#### 3.1.3 string赋值操作

功能描述:

* 给string字符串进行赋值



赋值的函数原型:

* `string& operator=(const char* s);`             //char*类型字符串 赋值给当前的字符串
* `string& operator=(const string &s);`         //把字符串s赋给当前的字符串
* `string& operator=(char c);`                          //字符赋值给当前的字符串
* `string& assign(const char *s);`                  //把字符串s赋给当前的字符串
* `string& assign(const char *s, int n);`     //把字符串s的前n个字符赋给当前的字符串
* `string& assign(const string &s);`              //把字符串s赋给当前字符串
* `string& assign(int n, char c);`                  //用n个字符c赋给当前字符串




**示例:**

```C++
//赋值
void test01()
{
	string str1;
	str1 = "hello world";
	cout << "str1 = " << str1 << endl;

	string str2;
	str2 = str1;
	cout << "str2 = " << str2 << endl;

	string str3;
	str3 = 'a';
	cout << "str3 = " << str3 << endl;

	string str4;
	str4.assign("hello c++");
	cout << "str4 = " << str4 << endl;

	string str5;
	str5.assign("hello c++",5);
	cout << "str5 = " << str5 << endl;


	string str6;
	str6.assign(str5);
	cout << "str6 = " << str6 << endl;

	string str7;
	str7.assign(5, 'x');
	cout << "str7 = " << str7 << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

​	string的赋值方式很多,`operator=`  这种方式是比较实用的









#### 3.1.4 string字符串拼接

**功能描述:**

* 实现在字符串末尾拼接字符串



**函数原型:**

* `string& operator+=(const char* str);`                   //重载+=操作符
* `string& operator+=(const char c);`                         //重载+=操作符
* `string& operator+=(const string& str);`                //重载+=操作符
* `string& append(const char *s); `                               //把字符串s连接到当前字符串结尾
* `string& append(const char *s, int n);`                 //把字符串s的前n个字符连接到当前字符串结尾
* `string& append(const string &s);`                           //同operator+=(const string& str)
* `string& append(const string &s, int pos, int n);`//字符串s中从pos开始的n个字符连接到字符串结尾




**示例:**


```C++
//字符串拼接
void test01()
{
	string str1 = "我";

	str1 += "爱玩游戏";

	cout << "str1 = " << str1 << endl;
	
	str1 += ':';

	cout << "str1 = " << str1 << endl;

	string str2 = "LOL DNF";

	str1 += str2;

	cout << "str1 = " << str1 << endl;

	string str3 = "I";
	str3.append(" love ");
	str3.append("game abcde", 4);
	//str3.append(str2);
	str3.append(str2, 4, 3); // 从下标4位置开始 ,截取3个字符,拼接到字符串末尾
	cout << "str3 = " << str3 << endl;
}
int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:字符串拼接的重载版本很多,初学阶段记住几种即可







#### 3.1.5 string查找和替换

**功能描述:**

* 查找:查找指定字符串是否存在
* 替换:在指定的位置替换字符串



**函数原型:**

* `int find(const string& str, int pos = 0) const;`              //查找str第一次出现位置,从pos开始查找
* `int find(const char* s, int pos = 0) const; `                     //查找s第一次出现位置,从pos开始查找
* `int find(const char* s, int pos, int n) const; `               //从pos位置查找s的前n个字符第一次位置
* `int find(const char c, int pos = 0) const; `                       //查找字符c第一次出现位置
* `int rfind(const string& str, int pos = npos) const;`      //查找str最后一次位置,从pos开始查找
* `int rfind(const char* s, int pos = npos) const;`              //查找s最后一次出现位置,从pos开始查找
* `int rfind(const char* s, int pos, int n) const;`              //从pos查找s的前n个字符最后一次位置
* `int rfind(const char c, int pos = 0) const;  `                      //查找字符c最后一次出现位置
* `string& replace(int pos, int n, const string& str); `       //替换从pos开始n个字符为字符串str
* `string& replace(int pos, int n,const char* s); `                 //替换从pos开始的n个字符为字符串s




**示例:**

```C++
//查找和替换
void test01()
{
	//查找
	string str1 = "abcdefgde";

	int pos = str1.find("de");

	if (pos == -1)
	{
		cout << "未找到" << endl;
	}
	else
	{
		cout << "pos = " << pos << endl;
	}
	

	pos = str1.rfind("de");

	cout << "pos = " << pos << endl;

}

void test02()
{
	//替换
	string str1 = "abcdefgde";
	str1.replace(1, 3, "1111");

	cout << "str1 = " << str1 << endl;
}

int main() {

	//test01();
	//test02();

	system("pause");

	return 0;
}
```

总结:

* find查找是从左往后,rfind从右往左
* find找到字符串后返回查找的第一个字符位置,找不到返回-1
* replace在替换时,要指定从哪个位置起,多少个字符,替换成什么样的字符串
















####    3.1.6 string字符串比较

**功能描述:**

* 字符串之间的比较

**比较方式:**

* 字符串比较是按字符的ASCII码进行对比

= 返回   0

\> 返回   1 

< 返回  -1



**函数原型:**

* `int compare(const string &s) const; `  //与字符串s比较
* `int compare(const char *s) const;`      //与字符串s比较





**示例:**

```C++
//字符串比较
void test01()
{

	string s1 = "hello";
	string s2 = "aello";

	int ret = s1.compare(s2);

	if (ret == 0) {
		cout << "s1 等于 s2" << endl;
	}
	else if (ret > 0)
	{
		cout << "s1 大于 s2" << endl;
	}
	else
	{
		cout << "s1 小于 s2" << endl;
	}

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:字符串对比主要是用于比较两个字符串是否相等,判断谁大谁小的意义并不是很大





#### 3.1.7 string字符存取



string中单个字符存取方式有两种



* `char& operator[](int n); `     //通过[]方式取字符
* `char& at(int n);   `                    //通过at方法获取字符





**示例:**

```C++
void test01()
{
	string str = "hello world";

	for (int i = 0; i < str.size(); i++)
	{
		cout << str[i] << " ";
	}
	cout << endl;

	for (int i = 0; i < str.size(); i++)
	{
		cout << str.at(i) << " ";
	}
	cout << endl;


	//字符修改
	str[0] = 'x';
	str.at(1) = 'x';
	cout << str << endl;
	
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:string字符串中单个字符存取有两种方式,利用 [ ] 或 at









#### 3.1.8 string插入和删除

**功能描述:**

* 对string字符串进行插入和删除字符操作

**函数原型:**

* `string& insert(int pos, const char* s);  `                //插入字符串
* `string& insert(int pos, const string& str); `        //插入字符串
* `string& insert(int pos, int n, char c);`                //在指定位置插入n个字符c
* `string& erase(int pos, int n = npos);`                    //删除从Pos开始的n个字符 





**示例:**

```C++
//字符串插入和删除
void test01()
{
	string str = "hello";
	str.insert(1, "111");
	cout << str << endl;

	str.erase(1, 3);  //从1号位置开始3个字符
	cout << str << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**插入和删除的起始下标都是从0开始











#### 3.1.9 string子串

**功能描述:**

* 从字符串中获取想要的子串



**函数原型:**

* `string substr(int pos = 0, int n = npos) const;`   //返回由pos开始的n个字符组成的字符串




**示例:**

```C++
//子串
void test01()
{

	string str = "abcdefg";
	string subStr = str.substr(1, 3);
	cout << "subStr = " << subStr << endl;

	string email = "[email protected]";
	int pos = email.find("@");
	string username = email.substr(0, pos);
	cout << "username: " << username << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**灵活的运用求子串功能,可以在实际开发中获取有效的信息







### 3.2 vector容器



#### 3.2.1 vector基本概念

**功能:**

* vector数据结构和**数组非常相似**,也称为**单端数组**



**vector与普通数组区别:**

* 不同之处在于数组是静态空间,而vector可以**动态扩展**



**动态扩展:**

* 并不是在原空间之后续接新空间,而是找更大的内存空间,然后将原数据拷贝新空间,释放原空间



![说明: 2015-11-10_151152](assets/clip_image002.jpg)



* vector容器的迭代器是支持随机访问的迭代器





#### 3.2.2 vector构造函数



**功能描述:**

* 创建vector容器



**函数原型:**

* `vector v; `               		     //采用模板实现类实现,默认构造函数
* `vector(v.begin(), v.end());   `       //将v[begin(), end())区间中的元素拷贝给本身。
* `vector(n, elem);`                            //构造函数将n个elem拷贝给本身。
* `vector(const vector &vec);`         //拷贝构造函数。




**示例:**


```C++
#include 

void printVector(vector& v) {

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	vector v1; //无参构造
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);

	vector v2(v1.begin(), v1.end());
	printVector(v2);

	vector v3(10, 100);
	printVector(v3);
	
	vector v4(v3);
	printVector(v4);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**vector的多种构造方式没有可比性,灵活使用即可









#### 3.2.3 vector赋值操作



**功能描述:**

* 给vector容器进行赋值



**函数原型:**

* `vector& operator=(const vector &vec);`//重载等号操作符


* `assign(beg, end);`       //将[beg, end)区间中的数据拷贝赋值给本身。
* `assign(n, elem);`        //将n个elem拷贝赋值给本身。





**示例:**

```C++
#include 

void printVector(vector& v) {

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//赋值操作
void test01()
{
	vector v1; //无参构造
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);

	vectorv2;
	v2 = v1;
	printVector(v2);

	vectorv3;
	v3.assign(v1.begin(), v1.end());
	printVector(v3);

	vectorv4;
	v4.assign(10, 100);
	printVector(v4);
}

int main() {

	test01();

	system("pause");

	return 0;
}

```

总结: vector赋值方式比较简单,使用operator=,或者assign都可以







#### 3.2.4  vector容量和大小

**功能描述:**

* 对vector容器的容量和大小操作



**函数原型:**

* `empty(); `                            //判断容器是否为空

* `capacity();`                      //容器的容量

* `size();`                              //返回容器中元素的个数

* `resize(int num);`             //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

  ​					      //如果容器变短,则末尾超出容器长度的元素被删除。

* `resize(int num, elem);`  //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

  ​				              //如果容器变短,则末尾超出容器长度的元素被删除




**示例:**


```C++
#include 

void printVector(vector& v) {

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	vector v1;
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);
	if (v1.empty())
	{
		cout << "v1为空" << endl;
	}
	else
	{
		cout << "v1不为空" << endl;
		cout << "v1的容量 = " << v1.capacity() << endl;
		cout << "v1的大小 = " << v1.size() << endl;
	}

	//resize 重新指定大小 ,若指定的更大,默认用0填充新位置,可以利用重载版本替换默认填充
	v1.resize(15,10);
	printVector(v1);

	//resize 重新指定大小 ,若指定的更小,超出部分元素被删除
	v1.resize(5);
	printVector(v1);
}

int main() {

	test01();

	system("pause");

	return 0;
}

```

总结:

* 判断是否为空  --- empty
* 返回元素个数  --- size
* 返回容器容量  --- capacity
* 重新指定大小  ---  resize













#### 3.2.5 vector插入和删除

**功能描述:**

* 对vector容器进行插入、删除操作



**函数原型:**

* `push_back(ele);`                                         //尾部插入元素ele
* `pop_back();`                                                //删除最后一个元素
* `insert(const_iterator pos, ele);`        //迭代器指向位置pos插入元素ele
* `insert(const_iterator pos, int count,ele);`//迭代器指向位置pos插入count个元素ele
* `erase(const_iterator pos);`                     //删除迭代器指向的元素
* `erase(const_iterator start, const_iterator end);`//删除迭代器从start到end之间的元素
* `clear();`                                                        //删除容器中所有元素





**示例:**

```C++

#include 

void printVector(vector& v) {

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//插入和删除
void test01()
{
	vector v1;
	//尾插
	v1.push_back(10);
	v1.push_back(20);
	v1.push_back(30);
	v1.push_back(40);
	v1.push_back(50);
	printVector(v1);
	//尾删
	v1.pop_back();
	printVector(v1);
	//插入
	v1.insert(v1.begin(), 100);
	printVector(v1);

	v1.insert(v1.begin(), 2, 1000);
	printVector(v1);

	//删除
	v1.erase(v1.begin());
	printVector(v1);

	//清空
	v1.erase(v1.begin(), v1.end());
	v1.clear();
	printVector(v1);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 尾插  --- push_back
* 尾删  --- pop_back
* 插入  --- insert    (位置迭代器)
* 删除  --- erase  (位置迭代器)
* 清空  ---  clear  













#### 3.2.6 vector数据存取



**功能描述:**

* 对vector中的数据的存取操作



**函数原型:**

* `at(int idx); `     //返回索引idx所指的数据
* `operator[]; `       //返回索引idx所指的数据
* `front(); `            //返回容器中第一个数据元素
* `back();`              //返回容器中最后一个数据元素





**示例:**

```C++
#include 

void test01()
{
	vectorv1;
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}

	for (int i = 0; i < v1.size(); i++)
	{
		cout << v1[i] << " ";
	}
	cout << endl;

	for (int i = 0; i < v1.size(); i++)
	{
		cout << v1.at(i) << " ";
	}
	cout << endl;

	cout << "v1的第一个元素为: " << v1.front() << endl;
	cout << "v1的最后一个元素为: " << v1.back() << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 除了用迭代器获取vector容器中元素,[ ]和at也可以
* front返回容器第一个元素
* back返回容器最后一个元素











#### 3.2.7 vector互换容器

**功能描述:**

* 实现两个容器内元素进行互换



**函数原型:**

* `swap(vec);`  // 将vec与本身的元素互换





**示例:**

```C++
#include 

void printVector(vector& v) {

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	vectorv1;
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);

	vectorv2;
	for (int i = 10; i > 0; i--)
	{
		v2.push_back(i);
	}
	printVector(v2);

	//互换容器
	cout << "互换后" << endl;
	v1.swap(v2);
	printVector(v1);
	printVector(v2);
}

void test02()
{
	vector v;
	for (int i = 0; i < 100000; i++) {
		v.push_back(i);
	}

	cout << "v的容量为:" << v.capacity() << endl;
	cout << "v的大小为:" << v.size() << endl;

	v.resize(3);

	cout << "v的容量为:" << v.capacity() << endl;
	cout << "v的大小为:" << v.size() << endl;

	//收缩内存
	vector(v).swap(v); //匿名对象

	cout << "v的容量为:" << v.capacity() << endl;
	cout << "v的大小为:" << v.size() << endl;
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

```

总结:swap可以使两个容器互换,可以达到实用的收缩内存效果









#### 3.2.8 vector预留空间

**功能描述:**

* 减少vector在动态扩展容量时的扩展次数



**函数原型:**

* `reserve(int len);`//容器预留len个元素长度,预留位置不初始化,元素不可访问。

  ​

**示例:**

```C++
#include 

void test01()
{
	vector v;

	//预留空间
	v.reserve(100000);

	int num = 0;
	int* p = NULL;
	for (int i = 0; i < 100000; i++) {
		v.push_back(i);
		if (p != &v[0]) {
			p = &v[0];
			num++;
		}
	}

	cout << "num:" << num << endl;
}

int main() {

	test01();
    
	system("pause");

	return 0;
}
```

总结:如果数据量较大,可以一开始利用reserve预留空间











### 3.3 deque容器

#### 3.3.1 deque容器基本概念



**功能:**

* 双端数组,可以对头端进行插入删除操作



**deque与vector区别:**

* vector对于头部的插入删除效率低,数据量越大,效率越低
* deque相对而言,对头部的插入删除速度回比vector快
* vector访问元素时的速度会比deque快,这和两者内部实现有关

![说明: 2015-11-19_204101](assets/clip_image002-1547547642923.jpg)



deque内部工作原理:

deque内部有个**中控器**,维护每段缓冲区中的内容,缓冲区中存放真实数据

中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间

![clip_image002-1547547896341](assets/clip_image002-1547547896341.jpg)

* deque容器的迭代器也是支持随机访问的



#### 3.3.2 deque构造函数

**功能描述:**

* deque容器构造



**函数原型:**

* `deque` deqT;                      //默认构造形式
* `deque(beg, end);`                  //构造函数将[beg, end)区间中的元素拷贝给本身。
* `deque(n, elem);`                    //构造函数将n个elem拷贝给本身。
* `deque(const deque &deq);`   //拷贝构造函数





**示例:**

```C++
#include 

void printDeque(const deque& d) 
{
	for (deque::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}
//deque构造
void test01() {

	deque d1; //无参构造函数
	for (int i = 0; i < 10; i++)
	{
		d1.push_back(i);
	}
	printDeque(d1);
	deque d2(d1.begin(),d1.end());
	printDeque(d2);

	dequed3(10,100);
	printDeque(d3);

	dequed4 = d3;
	printDeque(d4);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**deque容器和vector容器的构造方式几乎一致,灵活使用即可









#### 3.3.3 deque赋值操作



**功能描述:**

* 给deque容器进行赋值



**函数原型:**

* `deque& operator=(const deque &deq); `         //重载等号操作符


* `assign(beg, end);`                                           //将[beg, end)区间中的数据拷贝赋值给本身。
* `assign(n, elem);`                                             //将n个elem拷贝赋值给本身。





**示例:**

```C++
#include 

void printDeque(const deque& d) 
{
	for (deque::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}
//赋值操作
void test01()
{
	deque d1;
	for (int i = 0; i < 10; i++)
	{
		d1.push_back(i);
	}
	printDeque(d1);

	dequed2;
	d2 = d1;
	printDeque(d2);

	dequed3;
	d3.assign(d1.begin(), d1.end());
	printDeque(d3);

	dequed4;
	d4.assign(10, 100);
	printDeque(d4);

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:deque赋值操作也与vector相同,需熟练掌握







#### 3.3.4 deque大小操作

**功能描述:**

* 对deque容器的大小进行操作



**函数原型:**

* `deque.empty();`                       //判断容器是否为空

* `deque.size();`                         //返回容器中元素的个数

* `deque.resize(num);`                //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

  ​			                             //如果容器变短,则末尾超出容器长度的元素被删除。

* `deque.resize(num, elem);`     //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

  ​                                                     //如果容器变短,则末尾超出容器长度的元素被删除。

  ​



**示例:**

```C++
#include 

void printDeque(const deque& d) 
{
	for (deque::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}

//大小操作
void test01()
{
	deque d1;
	for (int i = 0; i < 10; i++)
	{
		d1.push_back(i);
	}
	printDeque(d1);

	//判断容器是否为空
	if (d1.empty()) {
		cout << "d1为空!" << endl;
	}
	else {
		cout << "d1不为空!" << endl;
		//统计大小
		cout << "d1的大小为:" << d1.size() << endl;
	}

	//重新指定大小
	d1.resize(15, 1);
	printDeque(d1);

	d1.resize(5);
	printDeque(d1);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* deque没有容量的概念
* 判断是否为空   --- empty
* 返回元素个数   --- size
* 重新指定个数   --- resize









#### 3.3.5 deque 插入和删除

**功能描述:**

* 向deque容器中插入和删除数据



**函数原型:**

两端插入操作:

- `push_back(elem);`          //在容器尾部添加一个数据
- `push_front(elem);`        //在容器头部插入一个数据
- `pop_back();`                   //删除容器最后一个数据
- `pop_front();`                 //删除容器第一个数据

指定位置操作:

* `insert(pos,elem);`         //在pos位置插入一个elem元素的拷贝,返回新数据的位置。

* `insert(pos,n,elem);`     //在pos位置插入n个elem数据,无返回值。

* `insert(pos,beg,end);`    //在pos位置插入[beg,end)区间的数据,无返回值。

* `clear();`                           //清空容器的所有数据

* `erase(beg,end);`             //删除[beg,end)区间的数据,返回下一个数据的位置。

* `erase(pos);`                    //删除pos位置的数据,返回下一个数据的位置。

  ​

  ​



**示例:**

```C++
#include 

void printDeque(const deque& d) 
{
	for (deque::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}
//两端操作
void test01()
{
	deque d;
	//尾插
	d.push_back(10);
	d.push_back(20);
	//头插
	d.push_front(100);
	d.push_front(200);

	printDeque(d);

	//尾删
	d.pop_back();
	//头删
	d.pop_front();
	printDeque(d);
}

//插入
void test02()
{
	deque d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);
	printDeque(d);

	d.insert(d.begin(), 1000);
	printDeque(d);

	d.insert(d.begin(), 2,10000);
	printDeque(d);

	dequed2;
	d2.push_back(1);
	d2.push_back(2);
	d2.push_back(3);

	d.insert(d.begin(), d2.begin(), d2.end());
	printDeque(d);

}

//删除
void test03()
{
	deque d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);
	printDeque(d);

	d.erase(d.begin());
	printDeque(d);

	d.erase(d.begin(), d.end());
	d.clear();
	printDeque(d);
}

int main() {

	//test01();

	//test02();

    test03();
    
	system("pause");

	return 0;
}

```

总结:

* 插入和删除提供的位置是迭代器!
* 尾插   ---  push_back
* 尾删   ---  pop_back
* 头插   ---  push_front
* 头删   ---  pop_front











#### 3.3.6 deque 数据存取



**功能描述:**

* 对deque 中的数据的存取操作



**函数原型:**

- `at(int idx); `     //返回索引idx所指的数据
- `operator[]; `      //返回索引idx所指的数据
- `front(); `            //返回容器中第一个数据元素
- `back();`              //返回容器中最后一个数据元素



**示例:**

```C++
#include 

void printDeque(const deque& d) 
{
	for (deque::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}

//数据存取
void test01()
{

	deque d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);

	for (int i = 0; i < d.size(); i++) {
		cout << d[i] << " ";
	}
	cout << endl;


	for (int i = 0; i < d.size(); i++) {
		cout << d.at(i) << " ";
	}
	cout << endl;

	cout << "front:" << d.front() << endl;

	cout << "back:" << d.back() << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

- 除了用迭代器获取deque容器中元素,[ ]和at也可以
- front返回容器第一个元素
- back返回容器最后一个元素













#### 3.3.7  deque 排序

**功能描述:**

* 利用算法实现对deque容器进行排序



**算法:**

* `sort(iterator beg, iterator end)`  //对beg和end区间内元素进行排序





**示例:**

```C++
#include 
#include 

void printDeque(const deque& d) 
{
	for (deque::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}

void test01()
{

	deque d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);

	printDeque(d);
	sort(d.begin(), d.end());
	printDeque(d);

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:sort算法非常实用,使用时包含头文件 algorithm即可











### 3.4 案例-评委打分



#### 3.4.1 案例描述

有5名选手:选手ABCDE,10个评委分别对每一名选手打分,去除最高分,去除评委中最低分,取平均分。



#### 3.4.2 实现步骤

1. 创建五名选手,放到vector中
2. 遍历vector容器,取出来每一个选手,执行for循环,可以把10个评分打分存到deque容器中
3. sort算法对deque容器中分数排序,去除最高和最低分
4. deque容器遍历一遍,累加总分
5. 获取平均分





**示例代码:**

```C++
//选手类
class Person
{
public:
	Person(string name, int score)
	{
		this->m_Name = name;
		this->m_Score = score;
	}

	string m_Name; //姓名
	int m_Score;  //平均分
};

void createPerson(vector&v)
{
	string nameSeed = "ABCDE";
	for (int i = 0; i < 5; i++)
	{
		string name = "选手";
		name += nameSeed[i];

		int score = 0;

		Person p(name, score);

		//将创建的person对象 放入到容器中
		v.push_back(p);
	}
}

//打分
void setScore(vector&v)
{
	for (vector::iterator it = v.begin(); it != v.end(); it++)
	{
		//将评委的分数 放入到deque容器中
		dequed;
		for (int i = 0; i < 10; i++)
		{
			int score = rand() % 41 + 60;  // 60 ~ 100
			d.push_back(score);
		}

		//cout << "选手: " << it->m_Name << " 打分: " << endl;
		//for (deque::iterator dit = d.begin(); dit != d.end(); dit++)
		//{
		//	cout << *dit << " ";
		//}
		//cout << endl;

		//排序
		sort(d.begin(), d.end());

		//去除最高和最低分
		d.pop_back();
		d.pop_front();

		//取平均分
		int sum = 0;
		for (deque::iterator dit = d.begin(); dit != d.end(); dit++)
		{
			sum += *dit; //累加每个评委的分数
		}

		int avg = sum / d.size();

		//将平均分 赋值给选手身上
		it->m_Score = avg;
	}

}

void showScore(vector&v)
{
	for (vector::iterator it = v.begin(); it != v.end(); it++)
	{
		cout << "姓名: " << it->m_Name << " 平均分: " << it->m_Score << endl;
	}
}

int main() {

	//随机数种子
	srand((unsigned int)time(NULL));

	//1、创建5名选手
	vectorv;  //存放选手容器
	createPerson(v);

	//测试
	//for (vector::iterator it = v.begin(); it != v.end(); it++)
	//{
	//	cout << "姓名: " << (*it).m_Name << " 分数: " << (*it).m_Score << endl;
	//}

	//2、给5名选手打分
	setScore(v);

	//3、显示最后得分
	showScore(v);

	system("pause");

	return 0;
}
```

**总结:** 选取不同的容器操作数据,可以提升代码的效率







### 3.5 stack容器

#### 3.5.1 stack 基本概念



**概念:**stack是一种**先进后出**(First In Last Out,FILO)的数据结构,它只有一个出口





![说明: 2015-11-15_195707](assets/clip_image002-1547604555425.jpg)

栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为

栈中进入数据称为  --- **入栈**  `push`

栈中弹出数据称为  --- **出栈**  `pop`



生活中的栈:

![img](assets/clip_image002.png)





![img](assets/clip_image002-1547605111510.jpg)



#### 3.5.2 stack 常用接口

功能描述:栈容器常用的对外接口



构造函数:

* `stack stk;`                                 //stack采用模板类实现, stack对象的默认构造形式
* `stack(const stack &stk);`            //拷贝构造函数

赋值操作:

* `stack& operator=(const stack &stk);`           //重载等号操作符

数据存取:

* `push(elem);`      //向栈顶添加元素
* `pop();`                //从栈顶移除第一个元素
* `top(); `                //返回栈顶元素

大小操作:

* `empty();`            //判断堆栈是否为空
* `size(); `              //返回栈的大小





**示例:**

```C++
#include 

//栈容器常用接口
void test01()
{
	//创建栈容器 栈容器必须符合先进后出
	stack s;

	//向栈中添加元素,叫做 压栈 入栈
	s.push(10);
	s.push(20);
	s.push(30);

	while (!s.empty()) {
		//输出栈顶元素
		cout << "栈顶元素为: " << s.top() << endl;
		//弹出栈顶元素
		s.pop();
	}
	cout << "栈的大小为:" << s.size() << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 入栈   --- push
* 出栈   --- pop
* 返回栈顶   --- top
* 判断栈是否为空   --- empty
* 返回栈大小   --- size











### 3.6 queue 容器

#### 3.6.1 queue 基本概念



**概念:**Queue是一种**先进先出**(First In First Out,FIFO)的数据结构,它有两个出口







![说明: 2015-11-15_214429](assets/clip_image002-1547606475892.jpg)

队列容器允许从一端新增元素,从另一端移除元素

队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为

队列中进数据称为 --- **入队**    `push`

队列中出数据称为 --- **出队**    `pop`



生活中的队列:

![1547606785041](assets/1547606785041.png)







#### 3.6.2 queue 常用接口



功能描述:栈容器常用的对外接口



构造函数:

- `queue que;`                                 //queue采用模板类实现,queue对象的默认构造形式
- `queue(const queue &que);`            //拷贝构造函数

赋值操作:

- `queue& operator=(const queue &que);`           //重载等号操作符

数据存取:

- `push(elem);`                             //往队尾添加元素
- `pop();`                                      //从队头移除第一个元素
- `back();`                                    //返回最后一个元素
- `front(); `                                  //返回第一个元素

大小操作:

- `empty();`            //判断堆栈是否为空
- `size(); `              //返回栈的大小



**示例:**

```C++
#include 
#include 
class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}

	string m_Name;
	int m_Age;
};

void test01() {

	//创建队列
	queue q;

	//准备数据
	Person p1("唐僧", 30);
	Person p2("孙悟空", 1000);
	Person p3("猪八戒", 900);
	Person p4("沙僧", 800);

	//向队列中添加元素  入队操作
	q.push(p1);
	q.push(p2);
	q.push(p3);
	q.push(p4);

	//队列不提供迭代器,更不支持随机访问	
	while (!q.empty()) {
		//输出队头元素
		cout << "队头元素-- 姓名: " << q.front().m_Name 
              << " 年龄: "<< q.front().m_Age << endl;
        
		cout << "队尾元素-- 姓名: " << q.back().m_Name  
              << " 年龄: " << q.back().m_Age << endl;
        
		cout << endl;
		//弹出队头元素
		q.pop();
	}

	cout << "队列大小为:" << q.size() << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

- 入队   --- push
- 出队   --- pop
- 返回队头元素   --- front
- 返回队尾元素   --- back
- 判断队是否为空   --- empty
- 返回队列大小   --- size















### 3.7 list容器

#### 3.7.1 list基本概念



**功能:**将数据进行链式存储

**链表**(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的



链表的组成:链表由一系列**结点**组成



结点的组成:一个是存储数据元素的**数据域**,另一个是存储下一个结点地址的**指针域**



STL中的链表是一个双向循环链表



![说明: 2015-11-15_225145](assets/clip_image002-1547608564071.jpg)

由于链表的存储方式并不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于**双向迭代器**



list的优点:

* 采用动态存储分配,不会造成内存浪费和溢出
* 链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素

list的缺点:

* 链表灵活,但是空间(指针域) 和 时间(遍历)额外耗费较大



List有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效,这在vector是不成立的。



总结:STL中**List和vector是两个最常被使用的容器**,各有优缺点





#### 3.7.2  list构造函数

**功能描述:**

* 创建list容器



**函数原型:**

* `list lst;`                               //list采用采用模板类实现,对象的默认构造形式:
* `list(beg,end);`                           //构造函数将[beg, end)区间中的元素拷贝给本身。
* `list(n,elem);`                             //构造函数将n个elem拷贝给本身。
* `list(const list &lst);`            //拷贝构造函数。





**示例:**

```C++
#include 

void printList(const list& L) {

	for (list::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	listL1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	printList(L1);

	listL2(L1.begin(),L1.end());
	printList(L2);

	listL3(L2);
	printList(L3);

	listL4(10, 1000);
	printList(L4);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:list构造方式同其他几个STL常用容器,熟练掌握即可













#### 3.7.3 list 赋值和交换

**功能描述:**

* 给list容器进行赋值,以及交换list容器

**函数原型:**

* `assign(beg, end);`            //将[beg, end)区间中的数据拷贝赋值给本身。
* `assign(n, elem);`              //将n个elem拷贝赋值给本身。
* `list& operator=(const list &lst);`         //重载等号操作符
* `swap(lst);`                         //将lst与本身的元素互换。



**示例:**

```C++
#include 

void printList(const list& L) {

	for (list::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//赋值和交换
void test01()
{
	listL1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);
	printList(L1);

	//赋值
	listL2;
	L2 = L1;
	printList(L2);

	listL3;
	L3.assign(L2.begin(), L2.end());
	printList(L3);

	listL4;
	L4.assign(10, 100);
	printList(L4);

}

//交换
void test02()
{

	listL1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	listL2;
	L2.assign(10, 100);

	cout << "交换前: " << endl;
	printList(L1);
	printList(L2);

	cout << endl;

	L1.swap(L2);

	cout << "交换后: " << endl;
	printList(L1);
	printList(L2);

}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

总结:list赋值和交换操作能够灵活运用即可















#### 3.7.4 list 大小操作

**功能描述:**

* 对list容器的大小进行操作



**函数原型:**

* `size(); `                             //返回容器中元素的个数

* `empty(); `                           //判断容器是否为空

* `resize(num);`                   //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

  ​					    //如果容器变短,则末尾超出容器长度的元素被删除。

* `resize(num, elem); `       //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

   			 	 	​					    //如果容器变短,则末尾超出容器长度的元素被删除。



**示例:**

```C++
#include 

void printList(const list& L) {

	for (list::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//大小操作
void test01()
{
	listL1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	if (L1.empty())
	{
		cout << "L1为空" << endl;
	}
	else
	{
		cout << "L1不为空" << endl;
		cout << "L1的大小为: " << L1.size() << endl;
	}

	//重新指定大小
	L1.resize(10);
	printList(L1);

	L1.resize(2);
	printList(L1);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

- 判断是否为空   --- empty
- 返回元素个数   --- size
- 重新指定个数   --- resize











#### 3.7.5 list 插入和删除

**功能描述:**

* 对list容器进行数据的插入和删除



**函数原型:**

* push_back(elem);//在容器尾部加入一个元素
* pop_back();//删除容器中最后一个元素
* push_front(elem);//在容器开头插入一个元素
* pop_front();//从容器开头移除第一个元素
* insert(pos,elem);//在pos位置插elem元素的拷贝,返回新数据的位置。
* insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。
* insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。
* clear();//移除容器的所有数据
* erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。
* erase(pos);//删除pos位置的数据,返回下一个数据的位置。
* remove(elem);//删除容器中所有与elem值匹配的元素。





**示例:**

```C++
#include 

void printList(const list& L) {

	for (list::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//插入和删除
void test01()
{
	list L;
	//尾插
	L.push_back(10);
	L.push_back(20);
	L.push_back(30);
	//头插
	L.push_front(100);
	L.push_front(200);
	L.push_front(300);

	printList(L);

	//尾删
	L.pop_back();
	printList(L);

	//头删
	L.pop_front();
	printList(L);

	//插入
	list::iterator it = L.begin();
	L.insert(++it, 1000);
	printList(L);

	//删除
	it = L.begin();
	L.erase(++it);
	printList(L);

	//移除
	L.push_back(10000);
	L.push_back(10000);
	L.push_back(10000);
	printList(L);
	L.remove(10000);
	printList(L);
    
    //清空
	L.clear();
	printList(L);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 尾插   --- push_back
* 尾删   --- pop_back
* 头插   --- push_front
* 头删   --- pop_front
* 插入   --- insert
* 删除   --- erase
* 移除   --- remove
* 清空   --- clear

















#### 3.7.6 list 数据存取

**功能描述:**

* 对list容器中数据进行存取



**函数原型:**

* `front();`        //返回第一个元素。
* `back();`         //返回最后一个元素。





**示例:**

```C++
#include 

//数据存取
void test01()
{
	listL1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	
	//cout << L1.at(0) << endl;//错误 不支持at访问数据
	//cout << L1[0] << endl; //错误  不支持[]方式访问数据
	cout << "第一个元素为: " << L1.front() << endl;
	cout << "最后一个元素为: " << L1.back() << endl;

	//list容器的迭代器是双向迭代器,不支持随机访问
	list::iterator it = L1.begin();
	//it = it + 1;//错误,不可以跳跃访问,即使是+1
}

int main() {

	test01();

	system("pause");

	return 0;
}

```

总结:

* list容器中不可以通过[]或者at方式访问数据
* 返回第一个元素   --- front
* 返回最后一个元素   --- back











#### 3.7.7 list 反转和排序

**功能描述:**

* 将容器中的元素反转,以及将容器中的数据进行排序



**函数原型:**

* `reverse();`   //反转链表
* `sort();`        //链表排序





**示例:**

```C++
void printList(const list& L) {

	for (list::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

bool myCompare(int val1 , int val2)
{
	return val1 > val2;
}

//反转和排序
void test01()
{
	list L;
	L.push_back(90);
	L.push_back(30);
	L.push_back(20);
	L.push_back(70);
	printList(L);

	//反转容器的元素
	L.reverse();
	printList(L);

	//排序
	L.sort(); //默认的排序规则 从小到大
	printList(L);

	L.sort(myCompare); //指定规则,从大到小
	printList(L);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 反转   --- reverse
* 排序   --- sort (成员函数)











#### 3.7.8 排序案例

案例描述:将Person自定义数据类型进行排序,Person中属性有姓名、年龄、身高

排序规则:按照年龄进行升序,如果年龄相同按照身高进行降序



**示例:**

```C++
#include 
#include 
class Person {
public:
	Person(string name, int age , int height) {
		m_Name = name;
		m_Age = age;
		m_Height = height;
	}

public:
	string m_Name;  //姓名
	int m_Age;      //年龄
	int m_Height;   //身高
};


bool ComparePerson(Person& p1, Person& p2) {

	if (p1.m_Age == p2.m_Age) {
		return p1.m_Height  > p2.m_Height;
	}
	else
	{
		return  p1.m_Age < p2.m_Age;
	}

}

void test01() {

	list L;

	Person p1("刘备", 35 , 175);
	Person p2("曹操", 45 , 180);
	Person p3("孙权", 40 , 170);
	Person p4("赵云", 25 , 190);
	Person p5("张飞", 35 , 160);
	Person p6("关羽", 35 , 200);

	L.push_back(p1);
	L.push_back(p2);
	L.push_back(p3);
	L.push_back(p4);
	L.push_back(p5);
	L.push_back(p6);

	for (list::iterator it = L.begin(); it != L.end(); it++) {
		cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age 
              << " 身高: " << it->m_Height << endl;
	}

	cout << "---------------------------------" << endl;
	L.sort(ComparePerson); //排序

	for (list::iterator it = L.begin(); it != L.end(); it++) {
		cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age 
              << " 身高: " << it->m_Height << endl;
	}
}

int main() {

	test01();

	system("pause");

	return 0;
}
```



总结:

* 对于自定义数据类型,必须要指定排序规则,否则编译器不知道如何进行排序


* 高级排序只是在排序规则上再进行一次逻辑规则制定,并不复杂



















### 3.8 set/ multiset 容器

#### 3.8.1 set基本概念

**简介:**

* 所有元素都会在插入时自动被排序





**本质:**

* set/multiset属于**关联式容器**,底层结构是用**二叉树**实现。





**set和multiset区别**:

* set不允许容器中有重复的元素
* multiset允许容器中有重复的元素





#### 3.8.2 set构造和赋值

功能描述:创建set容器以及赋值



构造:

* `set st;`                        //默认构造函数:
* `set(const set &st);`       //拷贝构造函数

赋值:

* `set& operator=(const set &st);`    //重载等号操作符



**示例:**

```C++
#include 

void printSet(set & s)
{
	for (set::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

//构造和赋值
void test01()
{
	set s1;

	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);
	printSet(s1);

	//拷贝构造
	sets2(s1);
	printSet(s2);

	//赋值
	sets3;
	s3 = s2;
	printSet(s3);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* set容器插入数据时用insert
* set容器插入数据的数据会自动排序











#### 3.8.3 set大小和交换

**功能描述:**

* 统计set容器大小以及交换set容器



**函数原型:**

* `size();`          //返回容器中元素的数目
* `empty();`        //判断容器是否为空
* `swap(st);`      //交换两个集合容器



**示例:**

```C++
#include 

void printSet(set & s)
{
	for (set::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

//大小
void test01()
{

	set s1;
	
	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);

	if (s1.empty())
	{
		cout << "s1为空" << endl;
	}
	else
	{
		cout << "s1不为空" << endl;
		cout << "s1的大小为: " << s1.size() << endl;
	}

}

//交换
void test02()
{
	set s1;

	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);

	set s2;

	s2.insert(100);
	s2.insert(300);
	s2.insert(200);
	s2.insert(400);

	cout << "交换前" << endl;
	printSet(s1);
	printSet(s2);
	cout << endl;

	cout << "交换后" << endl;
	s1.swap(s2);
	printSet(s1);
	printSet(s2);
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

总结:

* 统计大小   --- size
* 判断是否为空   --- empty
* 交换容器   --- swap

















#### 3.8.4 set插入和删除

**功能描述:**

* set容器进行插入数据和删除数据





**函数原型:**

* `insert(elem);`           //在容器中插入元素。
* `clear();`                    //清除所有元素
* `erase(pos);`              //删除pos迭代器所指的元素,返回下一个元素的迭代器。
* `erase(beg, end);`    //删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
* `erase(elem);`            //删除容器中值为elem的元素。





**示例:**

```C++
#include 

void printSet(set & s)
{
	for (set::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

//插入和删除
void test01()
{
	set s1;
	//插入
	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);
	printSet(s1);

	//删除
	s1.erase(s1.begin());
	printSet(s1);

	s1.erase(30);
	printSet(s1);

	//清空
	//s1.erase(s1.begin(), s1.end());
	s1.clear();
	printSet(s1);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 插入   --- insert
* 删除   --- erase
* 清空   --- clear











#### 3.8.5 set查找和统计

**功能描述:**

* 对set容器进行查找数据以及统计数据



**函数原型:**

* `find(key);`                  //查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
* `count(key);`                //统计key的元素个数





**示例:**

```C++
#include 

//查找和统计
void test01()
{
	set s1;
	//插入
	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);
	
	//查找
	set::iterator pos = s1.find(30);

	if (pos != s1.end())
	{
		cout << "找到了元素 : " << *pos << endl;
	}
	else
	{
		cout << "未找到元素" << endl;
	}

	//统计
	int num = s1.count(30);
	cout << "num = " << num << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 查找   ---  find    (返回的是迭代器)
* 统计   ---  count  (对于set,结果为0或者1)

















#### 3.8.6 set和multiset区别

**学习目标:**

* 掌握set和multiset的区别



**区别:**

* set不可以插入重复数据,而multiset可以
* set插入数据的同时会返回插入结果,表示插入是否成功
* multiset不会检测数据,因此可以插入重复数据





**示例:**

```C++
#include 

//set和multiset区别
void test01()
{
	set s;
	pair::iterator, bool>  ret = s.insert(10);
	if (ret.second) {
		cout << "第一次插入成功!" << endl;
	}
	else {
		cout << "第一次插入失败!" << endl;
	}

	ret = s.insert(10);
	if (ret.second) {
		cout << "第二次插入成功!" << endl;
	}
	else {
		cout << "第二次插入失败!" << endl;
	}
    
	//multiset
	multiset ms;
	ms.insert(10);
	ms.insert(10);

	for (multiset::iterator it = ms.begin(); it != ms.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 如果不允许插入重复数据可以利用set
* 如果需要插入重复数据利用multiset











#### 3.8.7 pair对组创建

**功能描述:**

* 成对出现的数据,利用对组可以返回两个数据





**两种创建方式:**

* `pair p ( value1, value2 );`
* `pair p = make_pair( value1, value2 );`





**示例:**

```C++
#include 

//对组创建
void test01()
{
	pair p(string("Tom"), 20);
	cout << "姓名: " <<  p.first << " 年龄: " << p.second << endl;

	pair p2 = make_pair("Jerry", 10);
	cout << "姓名: " << p2.first << " 年龄: " << p2.second << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

两种方式都可以创建对组,记住一种即可













#### 3.8.8 set容器排序

学习目标:

* set容器默认排序规则为从小到大,掌握如何改变排序规则



主要技术点:

* 利用仿函数,可以改变排序规则





**示例一**   set存放内置数据类型

```C++
#include 

class MyCompare 
{
public:
	bool operator()(int v1, int v2) {
		return v1 > v2;
	}
};
void test01() 
{    
	set s1;
	s1.insert(10);
	s1.insert(40);
	s1.insert(20);
	s1.insert(30);
	s1.insert(50);

	//默认从小到大
	for (set::iterator it = s1.begin(); it != s1.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;

	//指定排序规则
	set s2;
	s2.insert(10);
	s2.insert(40);
	s2.insert(20);
	s2.insert(30);
	s2.insert(50);

	for (set::iterator it = s2.begin(); it != s2.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:利用仿函数可以指定set容器的排序规则



**示例二** set存放自定义数据类型

```C++
#include 
#include 

class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}

	string m_Name;
	int m_Age;

};
class comparePerson
{
public:
	bool operator()(const Person& p1, const Person &p2)
	{
		//按照年龄进行排序  降序
		return p1.m_Age > p2.m_Age;
	}
};

void test01()
{
	set s;

	Person p1("刘备", 23);
	Person p2("关羽", 27);
	Person p3("张飞", 25);
	Person p4("赵云", 21);

	s.insert(p1);
	s.insert(p2);
	s.insert(p3);
	s.insert(p4);

	for (set::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << endl;
	}
}
int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

对于自定义数据类型,set必须指定排序规则才可以插入数据











### 3.9 map/ multimap容器

#### 3.9.1 map基本概念

**简介:**

* map中所有元素都是pair
* pair中第一个元素为key(键值),起到索引作用,第二个元素为value(实值)
* 所有元素都会根据元素的键值自动排序



**本质:**

* map/multimap属于**关联式容器**,底层结构是用二叉树实现。



**优点:**

* 可以根据key值快速找到value值



map和multimap**区别**:

- map不允许容器中有重复key值元素
- multimap允许容器中有重复key值元素




#### 3.9.2  map构造和赋值

**功能描述:**

* 对map容器进行构造和赋值操作

**函数原型:**

**构造:**

* `map mp;`                     //map默认构造函数: 
* `map(const map &mp);`             //拷贝构造函数



**赋值:**

* `map& operator=(const map &mp);`    //重载等号操作符



**示例:**

```C++
#include 

void printMap(map&m)
{
	for (map::iterator it = m.begin(); it != m.end(); it++)
	{
		cout << "key = " << it->first << " value = " << it->second << endl;
	}
	cout << endl;
}

void test01()
{
	mapm; //默认构造
	m.insert(pair(1, 10));
	m.insert(pair(2, 20));
	m.insert(pair(3, 30));
	printMap(m);

	mapm2(m); //拷贝构造
	printMap(m2);

	mapm3;
	m3 = m2; //赋值
	printMap(m3);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:map中所有元素都是成对出现,插入数据时候要使用对组











#### 3.9.3 map大小和交换

**功能描述:**

* 统计map容器大小以及交换map容器





函数原型:

- `size();`          //返回容器中元素的数目
- `empty();`        //判断容器是否为空
- `swap(st);`      //交换两个集合容器





**示例:**

```C++
#include 

void printMap(map&m)
{
	for (map::iterator it = m.begin(); it != m.end(); it++)
	{
		cout << "key = " << it->first << " value = " << it->second << endl;
	}
	cout << endl;
}

void test01()
{
	mapm;
	m.insert(pair(1, 10));
	m.insert(pair(2, 20));
	m.insert(pair(3, 30));

	if (m.empty())
	{
		cout << "m为空" << endl;
	}
	else
	{
		cout << "m不为空" << endl;
		cout << "m的大小为: " << m.size() << endl;
	}
}


//交换
void test02()
{
	mapm;
	m.insert(pair(1, 10));
	m.insert(pair(2, 20));
	m.insert(pair(3, 30));

	mapm2;
	m2.insert(pair(4, 100));
	m2.insert(pair(5, 200));
	m2.insert(pair(6, 300));

	cout << "交换前" << endl;
	printMap(m);
	printMap(m2);

	cout << "交换后" << endl;
	m.swap(m2);
	printMap(m);
	printMap(m2);
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}
```

总结:

- 统计大小   --- size
- 判断是否为空   --- empty
- 交换容器   --- swap











#### 3.9.4 map插入和删除

**功能描述:**

- map容器进行插入数据和删除数据





**函数原型:**

- `insert(elem);`           //在容器中插入元素。
- `clear();`                    //清除所有元素
- `erase(pos);`              //删除pos迭代器所指的元素,返回下一个元素的迭代器。
- `erase(beg, end);`    //删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。
- `erase(key);`            //删除容器中值为key的元素。



**示例:**

```C++
#include 

void printMap(map&m)
{
	for (map::iterator it = m.begin(); it != m.end(); it++)
	{
		cout << "key = " << it->first << " value = " << it->second << endl;
	}
	cout << endl;
}

void test01()
{
	//插入
	map m;
	//第一种插入方式
	m.insert(pair(1, 10));
	//第二种插入方式
	m.insert(make_pair(2, 20));
	//第三种插入方式
	m.insert(map::value_type(3, 30));
	//第四种插入方式
	m[4] = 40; 
	printMap(m);

	//删除
	m.erase(m.begin());
	printMap(m);

	m.erase(3);
	printMap(m);

	//清空
	m.erase(m.begin(),m.end());
	m.clear();
	printMap(m);
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* map插入方式很多,记住其一即可

- 插入   --- insert 
- 删除   --- erase
- 清空   --- clear













#### 3.9.5 map查找和统计

**功能描述:**

- 对map容器进行查找数据以及统计数据



**函数原型:**

- `find(key);`                  //查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();
- `count(key);`                //统计key的元素个数



**示例:**

```C++
#include 

//查找和统计
void test01()
{
	mapm; 
	m.insert(pair(1, 10));
	m.insert(pair(2, 20));
	m.insert(pair(3, 30));

	//查找
	map::iterator pos = m.find(3);

	if (pos != m.end())
	{
		cout << "找到了元素 key = " << (*pos).first << " value = " << (*pos).second << endl;
	}
	else
	{
		cout << "未找到元素" << endl;
	}

	//统计
	int num = m.count(3);
	cout << "num = " << num << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

- 查找   ---  find    (返回的是迭代器)
- 统计   ---  count  (对于map,结果为0或者1)















#### 3.9.6 map容器排序

**学习目标:**

- map容器默认排序规则为 按照key值进行 从小到大排序,掌握如何改变排序规则





**主要技术点:**

- 利用仿函数,可以改变排序规则





**示例:**

```C++
#include 

class MyCompare {
public:
	bool operator()(int v1, int v2) {
		return v1 > v2;
	}
};

void test01() 
{
	//默认从小到大排序
	//利用仿函数实现从大到小排序
	map m;

	m.insert(make_pair(1, 10));
	m.insert(make_pair(2, 20));
	m.insert(make_pair(3, 30));
	m.insert(make_pair(4, 40));
	m.insert(make_pair(5, 50));

	for (map::iterator it = m.begin(); it != m.end(); it++) {
		cout << "key:" << it->first << " value:" << it->second << endl;
	}
}
int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:

* 利用仿函数可以指定map容器的排序规则
* 对于自定义数据类型,map必须要指定排序规则,同set容器













### 3.10 案例-员工分组

#### 3.10.1 案例描述

* 公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作
* 员工信息有: 姓名  工资组成;部门分为:策划、美术、研发
* 随机给10名员工分配部门和工资
* 通过multimap进行信息的插入  key(部门编号) value(员工)
* 分部门显示员工信息





#### 3.10.2 实现步骤

1. 创建10名员工,放到vector中
2. 遍历vector容器,取出每个员工,进行随机分组
3. 分组后,将员工部门编号作为key,具体员工作为value,放入到multimap容器中
4. 分部门显示员工信息





**案例代码:**

```C++
#include
using namespace std;
#include 
#include 
#include 
#include 

/*
- 公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作
- 员工信息有: 姓名  工资组成;部门分为:策划、美术、研发
- 随机给10名员工分配部门和工资
- 通过multimap进行信息的插入  key(部门编号) value(员工)
- 分部门显示员工信息
*/

#define CEHUA  0
#define MEISHU 1
#define YANFA  2

class Worker
{
public:
	string m_Name;
	int m_Salary;
};

void createWorker(vector&v)
{
	string nameSeed = "ABCDEFGHIJ";
	for (int i = 0; i < 10; i++)
	{
		Worker worker;
		worker.m_Name = "员工";
		worker.m_Name += nameSeed[i];

		worker.m_Salary = rand() % 10000 + 10000; // 10000 ~ 19999
		//将员工放入到容器中
		v.push_back(worker);
	}
}

//员工分组
void setGroup(vector&v,multimap&m)
{
	for (vector::iterator it = v.begin(); it != v.end(); it++)
	{
		//产生随机部门编号
		int deptId = rand() % 3; // 0 1 2 

		//将员工插入到分组中
		//key部门编号,value具体员工
		m.insert(make_pair(deptId, *it));
	}
}

void showWorkerByGourp(multimap&m)
{
	// 0  A  B  C   1  D  E   2  F G ...
	cout << "策划部门:" << endl;

	multimap::iterator pos = m.find(CEHUA);
	int count = m.count(CEHUA); // 统计具体人数
	int index = 0;
	for (; pos != m.end() && index < count; pos++ , index++)
	{
		cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
	}

	cout << "----------------------" << endl;
	cout << "美术部门: " << endl;
	pos = m.find(MEISHU);
	count = m.count(MEISHU); // 统计具体人数
	index = 0;
	for (; pos != m.end() && index < count; pos++, index++)
	{
		cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
	}

	cout << "----------------------" << endl;
	cout << "研发部门: " << endl;
	pos = m.find(YANFA);
	count = m.count(YANFA); // 统计具体人数
	index = 0;
	for (; pos != m.end() && index < count; pos++, index++)
	{
		cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
	}

}

int main() {

	srand((unsigned int)time(NULL));

	//1、创建员工
	vectorvWorker;
	createWorker(vWorker);

	//2、员工分组
	multimapmWorker;
	setGroup(vWorker, mWorker);


	//3、分组显示员工
	showWorkerByGourp(mWorker);

	测试
	//for (vector::iterator it = vWorker.begin(); it != vWorker.end(); it++)
	//{
	//	cout << "姓名: " << it->m_Name << " 工资: " << it->m_Salary << endl;
	//}

	system("pause");

	return 0;
}
```

总结:

* 当数据以键值对形式存在,可以考虑用map 或 multimap







## 4 STL- 函数对象

### 4.1 函数对象

#### 4.1.1 函数对象概念

**概念:**

* 重载**函数调用操作符**的类,其对象常称为**函数对象**
* **函数对象**使用重载的()时,行为类似函数调用,也叫**仿函数**



**本质:**

函数对象(仿函数)是一个**类**,不是一个函数



#### 4.1.2  函数对象使用

**特点:**

* 函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
* 函数对象超出普通函数的概念,函数对象可以有自己的状态
* 函数对象可以作为参数传递





**示例:**

```C++
#include 

//1、函数对象在使用时,可以像普通函数那样调用, 可以有参数,可以有返回值
class MyAdd
{
public :
	int operator()(int v1,int v2)
	{
		return v1 + v2;
	}
};

void test01()
{
	MyAdd myAdd;
	cout << myAdd(10, 10) << endl;
}

//2、函数对象可以有自己的状态
class MyPrint
{
public:
	MyPrint()
	{
		count = 0;
	}
	void operator()(string test)
	{
		cout << test << endl;
		count++; //统计使用次数
	}

	int count; //内部自己的状态
};
void test02()
{
	MyPrint myPrint;
	myPrint("hello world");
	myPrint("hello world");
	myPrint("hello world");
	cout << "myPrint调用次数为: " << myPrint.count << endl;
}

//3、函数对象可以作为参数传递
void doPrint(MyPrint &mp , string test)
{
	mp(test);
}

void test03()
{
	MyPrint myPrint;
	doPrint(myPrint, "Hello C++");
}

int main() {

	//test01();
	//test02();
	test03();

	system("pause");

	return 0;
}
```

总结:

* 仿函数写法非常灵活,可以作为参数进行传递。













### 4.2  谓词

#### 4.2.1 谓词概念



**概念:**

* 返回bool类型的仿函数称为**谓词**
* 如果operator()接受一个参数,那么叫做一元谓词
* 如果operator()接受两个参数,那么叫做二元谓词





#### 4.2.2 一元谓词

**示例:**

```C++
#include 
#include 

//1.一元谓词
struct GreaterFive{
	bool operator()(int val) {
		return val > 5;
	}
};

void test01() {

	vector v;
	for (int i = 0; i < 10; i++)
	{
		v.push_back(i);
	}

	vector::iterator it = find_if(v.begin(), v.end(), GreaterFive());
	if (it == v.end()) {
		cout << "没找到!" << endl;
	}
	else {
		cout << "找到:" << *it << endl;
	}

}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:参数只有一个的谓词,称为一元谓词











#### 4.2.3 二元谓词

**示例:**

```C++
#include 
#include 
//二元谓词
class MyCompare
{
public:
	bool operator()(int num1, int num2)
	{
		return num1 > num2;
	}
};

void test01()
{
	vector v;
	v.push_back(10);
	v.push_back(40);
	v.push_back(20);
	v.push_back(30);
	v.push_back(50);

	//默认从小到大
	sort(v.begin(), v.end());
	for (vector::iterator it = v.begin(); it != v.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
	cout << "----------------------------" << endl;

	//使用函数对象改变算法策略,排序从大到小
	sort(v.begin(), v.end(), MyCompare());
	for (vector::iterator it = v.begin(); it != v.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:参数只有两个的谓词,称为二元谓词

















### 4.3 内建函数对象

#### 4.3.1 内建函数对象意义

**概念:**

* STL内建了一些函数对象



**分类:**

* 算术仿函数

* 关系仿函数

* 逻辑仿函数

**用法:**

* 这些仿函数所产生的对象,用法和一般函数完全相同
* 使用内建函数对象,需要引入头文件 `#include`







#### 4.3.2 算术仿函数

**功能描述:**

* 实现四则运算
* 其中negate是一元运算,其他都是二元运算



**仿函数原型:**

* `template T plus`                //加法仿函数
* `template T minus`              //减法仿函数
* `template T multiplies`    //乘法仿函数
* `template T divides`         //除法仿函数
* `template T modulus`         //取模仿函数
* `template T negate`           //取反仿函数



**示例:**

```C++
#include 
//negate
void test01()
{
	negate n;
	cout << n(50) << endl;
}

//plus
void test02()
{
	plus p;
	cout << p(10, 20) << endl;
}

int main() {

	test01();
	test02();

	system("pause");

	return 0;
}
```

总结:使用内建函数对象时,需要引入头文件 `#include `









#### 4.3.3 关系仿函数

**功能描述:**

- 实现关系对比



**仿函数原型:**

* `template bool equal_to`                    //等于
* `template bool not_equal_to`            //不等于
* `template bool greater`                      //大于
* `template bool greater_equal`          //大于等于
* `template bool less`                           //小于
* `template bool less_equal`               //小于等于



**示例:**

```C++
#include 
#include 
#include 

class MyCompare
{
public:
	bool operator()(int v1,int v2)
	{
		return v1 > v2;
	}
};
void test01()
{
	vector v;

	v.push_back(10);
	v.push_back(30);
	v.push_back(50);
	v.push_back(40);
	v.push_back(20);

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;

	//自己实现仿函数
	//sort(v.begin(), v.end(), MyCompare());
	//STL内建仿函数  大于仿函数
	sort(v.begin(), v.end(), greater());

	for (vector::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:关系仿函数中最常用的就是greater<>大于











#### 4.3.4 逻辑仿函数

**功能描述:**

- 实现逻辑运算



**函数原型:**

* `template bool logical_and`              //逻辑与
* `template bool logical_or`                //逻辑或
* `template bool logical_not`              //逻辑非



**示例:**

```C++
#include 
#include 
#include 
void test01()
{
	vector v;
	v.push_back(true);
	v.push_back(false);
	v.push_back(true);
	v.push_back(false);

	for (vector::iterator it = v.begin();it!= v.end();it++)
	{
		cout << *it << " ";
	}
	cout << endl;

	//逻辑非  将v容器搬运到v2中,并执行逻辑非运算
	vector v2;
	v2.resize(v.size());
	transform(v.begin(), v.end(),  v2.begin(), logical_not());
	for (vector::iterator it = v2.begin(); it != v2.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

总结:逻辑仿函数实际应用较少,了解即可







## 5 STL- 常用算法



**概述**:

* 算法主要是由头文件`` `` ``组成。



* ``是所有STL头文件中最大的一个,范围涉及到比较、 交换、查找、遍历操作、复制、修改等等
* ``体积很小,只包括几个在序列上面进行简单数学运算的模板函数
* ``定义了一些模板类,用以声明函数对象。





### 5.1 常用遍历算法

**学习目标:**

* 掌握常用的遍历算法



**算法简介:**

* `for_each`     //遍历容器
* `transform`   //搬运容器到另一个容器中





#### 5.1.1 for_each

**功能描述:**

* 实现遍历容器

**函数原型:**

* `for_each(iterator beg, iterator end, _func);  `

  // 遍历算法 遍历容器元素

  // beg 开始迭代器

  // end 结束迭代器

  // _func 函数或者函数对象



**示例:**

```C++
#include 
#include 

//普通函数
void print01(int val) 
{
	cout << val << " ";
}
//函数对象
class print02 
{
 public:
	void operator()(int val) 
	{
		cout << val << " ";
	}
};

//for_each算法基本用法
void test01() {

	vector v;
	for (int i = 0; i < 10; i++) 
	{
		v.push_back(i);
	}

	//遍历算法
	for_each(v.begin(), v.end(), print01);
	cout << endl;

	for_each(v.begin(), v.end(), print02());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**for_each在实际开发中是最常用遍历算法,需要熟练掌握









#### 5.1.2 transform

**功能描述:**

* 搬运容器到另一个容器中

**函数原型:**

* `transform(iterator beg1, iterator end1, iterator beg2, _func);`

//beg1 源容器开始迭代器

//end1 源容器结束迭代器

//beg2 目标容器开始迭代器

//_func 函数或者函数对象



**示例:**

```C++
#include
#include

//常用遍历算法  搬运 transform

class TransForm
{
public:
	int operator()(int val)
	{
		return val;
	}

};

class MyPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vectorv;
	for (int i = 0; i < 10; i++)
	{
		v.push_back(i);
	}

	vectorvTarget; //目标容器

	vTarget.resize(v.size()); // 目标容器需要提前开辟空间

	transform(v.begin(), v.end(), vTarget.begin(), TransForm());

	for_each(vTarget.begin(), vTarget.end(), MyPrint());
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:** 搬运的目标容器必须要提前开辟空间,否则无法正常搬运







### 5.2 常用查找算法

学习目标:

- 掌握常用的查找算法





**算法简介:**

- `find`                     //查找元素
- `find_if`               //按条件查找元素
- `adjacent_find`    //查找相邻重复元素
- `binary_search`    //二分查找法
- `count`                   //统计元素个数
- `count_if`             //按条件统计元素个数




#### 5.2.1 find

**功能描述:**

* 查找指定元素,找到返回指定元素的迭代器,找不到返回结束迭代器end()



**函数原型:**

- `find(iterator beg, iterator end, value);  `

  // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

  // beg 开始迭代器

  // end 结束迭代器

  // value 查找的元素





**示例:**

```C++
#include 
#include 
#include 
void test01() {

	vector v;
	for (int i = 0; i < 10; i++) {
		v.push_back(i + 1);
	}
	//查找容器中是否有 5 这个元素
	vector::iterator it = find(v.begin(), v.end(), 5);
	if (it == v.end()) 
	{
		cout << "没有找到!" << endl;
	}
	else 
	{
		cout << "找到:" << *it << endl;
	}
}

class Person {
public:
	Person(string name, int age) 
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	//重载==
	bool operator==(const Person& p) 
	{
		if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) 
		{
			return true;
		}
		return false;
	}

public:
	string m_Name;
	int m_Age;
};

void test02() {

	vector v;

	//创建数据
	Person p1("aaa", 10);
	Person p2("bbb", 20);
	Person p3("ccc", 30);
	Person p4("ddd", 40);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);

	vector::iterator it = find(v.begin(), v.end(), p2);
	if (it == v.end()) 
	{
		cout << "没有找到!" << endl;
	}
	else 
	{
		cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
	}
}
```

总结: 利用find可以在容器中找指定的元素,返回值是**迭代器**













#### 5.2.2 find_if

**功能描述:**

* 按条件查找元素

**函数原型:**

- `find_if(iterator beg, iterator end, _Pred);  `

  // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

  // beg 开始迭代器

  // end 结束迭代器

  // _Pred 函数或者谓词(返回bool类型的仿函数)



**示例:**

```C++
#include 
#include 
#include 

//内置数据类型
class GreaterFive
{
public:
	bool operator()(int val)
	{
		return val > 5;
	}
};

void test01() {

	vector v;
	for (int i = 0; i < 10; i++) {
		v.push_back(i + 1);
	}

	vector::iterator it = find_if(v.begin(), v.end(), GreaterFive());
	if (it == v.end()) {
		cout << "没有找到!" << endl;
	}
	else {
		cout << "找到大于5的数字:" << *it << endl;
	}
}

//自定义数据类型
class Person {
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
public:
	string m_Name;
	int m_Age;
};

class Greater20
{
public:
	bool operator()(Person &p)
	{
		return p.m_Age > 20;
	}

};

void test02() {

	vector v;

	//创建数据
	Person p1("aaa", 10);
	Person p2("bbb", 20);
	Person p3("ccc", 30);
	Person p4("ddd", 40);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);

	vector::iterator it = find_if(v.begin(), v.end(), Greater20());
	if (it == v.end())
	{
		cout << "没有找到!" << endl;
	}
	else
	{
		cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
	}
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

总结:find_if按条件查找使查找更加灵活,提供的仿函数可以改变不同的策略















#### 5.2.3 adjacent_find

**功能描述:**

* 查找相邻重复元素



**函数原型:**

- `adjacent_find(iterator beg, iterator end);  `

  // 查找相邻重复元素,返回相邻元素的第一个位置的迭代器

  // beg 开始迭代器

  // end 结束迭代器

  ​



**示例:**

```C++
#include 
#include 

void test01()
{
	vector v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(5);
	v.push_back(2);
	v.push_back(4);
	v.push_back(4);
	v.push_back(3);

	//查找相邻重复元素
	vector::iterator it = adjacent_find(v.begin(), v.end());
	if (it == v.end()) {
		cout << "找不到!" << endl;
	}
	else {
		cout << "找到相邻重复元素为:" << *it << endl;
	}
}
```

总结:面试题中如果出现查找相邻重复元素,记得用STL中的adjacent_find算法









#### 5.2.4 binary_search

**功能描述:**

* 查找指定元素是否存在



**函数原型:**

- `bool binary_search(iterator beg, iterator end, value);  `

  // 查找指定的元素,查到 返回true  否则false

  // 注意: 在**无序序列中不可用**

  // beg 开始迭代器

  // end 结束迭代器

  // value 查找的元素





**示例:**

```C++
#include 
#include 

void test01()
{
	vectorv;

	for (int i = 0; i < 10; i++)
	{
		v.push_back(i);
	}
	//二分查找
	bool ret = binary_search(v.begin(), v.end(),2);
	if (ret)
	{
		cout << "找到了" << endl;
	}
	else
	{
		cout << "未找到" << endl;
	}
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**二分查找法查找效率很高,值得注意的是查找的容器中元素必须的有序序列









#### 5.2.5 count

**功能描述:**

* 统计元素个数



**函数原型:**

- `count(iterator beg, iterator end, value);  `

  // 统计元素出现次数

  // beg 开始迭代器

  // end 结束迭代器

  // value 统计的元素





**示例:**

```C++
#include 
#include 

//内置数据类型
void test01()
{
	vector v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(4);
	v.push_back(5);
	v.push_back(3);
	v.push_back(4);
	v.push_back(4);

	int num = count(v.begin(), v.end(), 4);

	cout << "4的个数为: " << num << endl;
}

//自定义数据类型
class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	bool operator==(const Person & p)
	{
		if (this->m_Age == p.m_Age)
		{
			return true;
		}
		else
		{
			return false;
		}
	}
	string m_Name;
	int m_Age;
};

void test02()
{
	vector v;

	Person p1("刘备", 35);
	Person p2("关羽", 35);
	Person p3("张飞", 35);
	Person p4("赵云", 30);
	Person p5("曹操", 25);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);
	v.push_back(p5);
    
    Person p("诸葛亮",35);

	int num = count(v.begin(), v.end(), p);
	cout << "num = " << num << endl;
}
int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

**总结:** 统计自定义数据类型时候,需要配合重载 `operator==`

















#### 5.2.6 count_if

**功能描述:**

* 按条件统计元素个数

**函数原型:**

- `count_if(iterator beg, iterator end, _Pred);  `

  // 按条件统计元素出现次数

  // beg 开始迭代器

  // end 结束迭代器

  // _Pred 谓词

  ​

**示例:**

```C++
#include 
#include 

class Greater4
{
public:
	bool operator()(int val)
	{
		return val >= 4;
	}
};

//内置数据类型
void test01()
{
	vector v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(4);
	v.push_back(5);
	v.push_back(3);
	v.push_back(4);
	v.push_back(4);

	int num = count_if(v.begin(), v.end(), Greater4());

	cout << "大于4的个数为: " << num << endl;
}

//自定义数据类型
class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}

	string m_Name;
	int m_Age;
};

class AgeLess35
{
public:
	bool operator()(const Person &p)
	{
		return p.m_Age < 35;
	}
};
void test02()
{
	vector v;

	Person p1("刘备", 35);
	Person p2("关羽", 35);
	Person p3("张飞", 35);
	Person p4("赵云", 30);
	Person p5("曹操", 25);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);
	v.push_back(p5);

	int num = count_if(v.begin(), v.end(), AgeLess35());
	cout << "小于35岁的个数:" << num << endl;
}


int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}
```

**总结:**按值统计用count,按条件统计用count_if













### 5.3 常用排序算法

**学习目标:**

- 掌握常用的排序算法

**算法简介:**

- `sort`             //对容器内元素进行排序
- `random_shuffle`   //洗牌   指定范围内的元素随机调整次序
- `merge `           // 容器元素合并,并存储到另一容器中
- `reverse`       // 反转指定范围的元素





#### 5.3.1 sort

**功能描述:**

* 对容器内元素进行排序





**函数原型:**

- `sort(iterator beg, iterator end, _Pred);  `

  // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

  //  beg    开始迭代器

  //  end    结束迭代器

  // _Pred  谓词





**示例:**

```c++
#include 
#include 

void myPrint(int val)
{
	cout << val << " ";
}

void test01() {
	vector v;
	v.push_back(10);
	v.push_back(30);
	v.push_back(50);
	v.push_back(20);
	v.push_back(40);

	//sort默认从小到大排序
	sort(v.begin(), v.end());
	for_each(v.begin(), v.end(), myPrint);
	cout << endl;

	//从大到小排序
	sort(v.begin(), v.end(), greater());
	for_each(v.begin(), v.end(), myPrint);
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**sort属于开发中最常用的算法之一,需熟练掌握













#### 5.3.2 random_shuffle

**功能描述:**

* 洗牌   指定范围内的元素随机调整次序



**函数原型:**

- `random_shuffle(iterator beg, iterator end);  `

  // 指定范围内的元素随机调整次序

  // beg 开始迭代器

  // end 结束迭代器

  ​

**示例:**

```c++
#include 
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	srand((unsigned int)time(NULL));
	vector v;
	for(int i = 0 ; i < 10;i++)
	{
		v.push_back(i);
	}
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	//打乱顺序
	random_shuffle(v.begin(), v.end());
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**random_shuffle洗牌算法比较实用,使用时记得加随机数种子















#### 5.3.3 merge

**功能描述:**

* 两个容器元素合并,并存储到另一容器中



**函数原型:**

- `merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);  `

  // 容器元素合并,并存储到另一容器中

  // 注意: 两个容器必须是**有序的**

  // beg1   容器1开始迭代器
  // end1   容器1结束迭代器
  // beg2   容器2开始迭代器
  // end2   容器2结束迭代器
  // dest    目标容器开始迭代器

  ​

**示例:**

```c++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v1;
	vector v2;
	for (int i = 0; i < 10 ; i++) 
    {
		v1.push_back(i);
		v2.push_back(i + 1);
	}

	vector vtarget;
	//目标容器需要提前开辟空间
	vtarget.resize(v1.size() + v2.size());
	//合并  需要两个有序序列
	merge(v1.begin(), v1.end(), v2.begin(), v2.end(), vtarget.begin());
	for_each(vtarget.begin(), vtarget.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**merge合并的两个容器必须的有序序列











#### 5.3.4 reverse

**功能描述:**

* 将容器内元素进行反转



**函数原型:**

- `reverse(iterator beg, iterator end);  `

  // 反转指定范围的元素

  // beg 开始迭代器

  // end 结束迭代器

  ​

**示例:**

```c++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v;
	v.push_back(10);
	v.push_back(30);
	v.push_back(50);
	v.push_back(20);
	v.push_back(40);

	cout << "反转前: " << endl;
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	cout << "反转后: " << endl;

	reverse(v.begin(), v.end());
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**reverse反转区间内元素,面试题可能涉及到









### 5.4 常用拷贝和替换算法

**学习目标:**

- 掌握常用的拷贝和替换算法

**算法简介:**

- `copy`                      // 容器内指定范围的元素拷贝到另一容器中
- `replace`                // 将容器内指定范围的旧元素修改为新元素
- `replace_if `          // 容器内指定范围满足条件的元素替换为新元素
- `swap`                     // 互换两个容器的元素




#### 5.4.1 copy

**功能描述:**

* 容器内指定范围的元素拷贝到另一容器中



**函数原型:**

- `copy(iterator beg, iterator end, iterator dest);  `

  // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置

  // beg  开始迭代器

  // end  结束迭代器

  // dest 目标起始迭代器



**示例:**

```c++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v1;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i + 1);
	}
	vector v2;
	v2.resize(v1.size());
	copy(v1.begin(), v1.end(), v2.begin());

	for_each(v2.begin(), v2.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**利用copy算法在拷贝时,目标容器记得提前开辟空间















#### 5.4.2 replace

**功能描述:**

* 将容器内指定范围的旧元素修改为新元素



**函数原型:**

- `replace(iterator beg, iterator end, oldvalue, newvalue);  `

  // 将区间内旧元素 替换成 新元素

  // beg 开始迭代器

  // end 结束迭代器

  // oldvalue 旧元素

  // newvalue 新元素



**示例:**

```c++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v;
	v.push_back(20);
	v.push_back(30);
	v.push_back(20);
	v.push_back(40);
	v.push_back(50);
	v.push_back(10);
	v.push_back(20);

	cout << "替换前:" << endl;
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	//将容器中的20 替换成 2000
	cout << "替换后:" << endl;
	replace(v.begin(), v.end(), 20,2000);
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**replace会替换区间内满足条件的元素













#### 5.4.3 replace_if

**功能描述:**  

* 将区间内满足条件的元素,替换成指定元素



**函数原型:**

- `replace_if(iterator beg, iterator end, _pred, newvalue);  `

  // 按条件替换元素,满足条件的替换成指定元素

  // beg 开始迭代器

  // end 结束迭代器

  // _pred 谓词

  // newvalue 替换的新元素



**示例:**

```c++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

class ReplaceGreater30
{
public:
	bool operator()(int val)
	{
		return val >= 30;
	}

};

void test01()
{
	vector v;
	v.push_back(20);
	v.push_back(30);
	v.push_back(20);
	v.push_back(40);
	v.push_back(50);
	v.push_back(10);
	v.push_back(20);

	cout << "替换前:" << endl;
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	//将容器中大于等于的30 替换成 3000
	cout << "替换后:" << endl;
	replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000);
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**replace_if按条件查找,可以利用仿函数灵活筛选满足的条件







#### 5.4.4 swap

**功能描述:**

* 互换两个容器的元素



**函数原型:**

- `swap(container c1, container c2);  `

  // 互换两个容器的元素

  // c1容器1

  // c2容器2

  ​

**示例:**

```c++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v1;
	vector v2;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i);
		v2.push_back(i+100);
	}

	cout << "交换前: " << endl;
	for_each(v1.begin(), v1.end(), myPrint());
	cout << endl;
	for_each(v2.begin(), v2.end(), myPrint());
	cout << endl;

	cout << "交换后: " << endl;
	swap(v1, v2);
	for_each(v1.begin(), v1.end(), myPrint());
	cout << endl;
	for_each(v2.begin(), v2.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**swap交换容器时,注意交换的容器要同种类型













### 5.5 常用算术生成算法

**学习目标:**

- 掌握常用的算术生成算法



**注意:**

* 算术生成算法属于小型算法,使用时包含的头文件为 `#include `



**算法简介:**

- `accumulate`      // 计算容器元素累计总和

- `fill`                 // 向容器中添加元素

  ​

#### 5.5.1 accumulate

**功能描述:**

*  计算区间内 容器元素累计总和



**函数原型:**

- `accumulate(iterator beg, iterator end, value);  `

  // 计算容器元素累计总和

  // beg 开始迭代器

  // end 结束迭代器

  // value 起始值



**示例:**

```c++
#include 
#include 
void test01()
{
	vector v;
	for (int i = 0; i <= 100; i++) {
		v.push_back(i);
	}

	int total = accumulate(v.begin(), v.end(), 0);

	cout << "total = " << total << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**accumulate使用时头文件注意是 numeric,这个算法很实用



#### 5.5.2 fill

**功能描述:**

* 向容器中填充指定的元素



**函数原型:**

- `fill(iterator beg, iterator end, value);  `

  // 向容器中填充元素

  // beg 开始迭代器

  // end 结束迭代器

  // value 填充的值



**示例:**

```c++
#include 
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{

	vector v;
	v.resize(10);
	//填充
	fill(v.begin(), v.end(), 100);

	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:**利用fill可以将容器区间内元素填充为 指定的值





### 5.6 常用集合算法

**学习目标:**

- 掌握常用的集合算法



**算法简介:**

- `set_intersection`          // 求两个容器的交集

- `set_union`                       // 求两个容器的并集

- `set_difference `              // 求两个容器的差集

  ​



#### 5.6.1 set_intersection

**功能描述:**

* 求两个容器的交集



**函数原型:**

- `set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);  `

  // 求两个集合的交集

  // **注意:两个集合必须是有序序列**

  // beg1 容器1开始迭代器
  // end1 容器1结束迭代器
  // beg2 容器2开始迭代器
  // end2 容器2结束迭代器
  // dest 目标容器开始迭代器



**示例:**

```C++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v1;
	vector v2;
	for (int i = 0; i < 10; i++)
    {
		v1.push_back(i);
		v2.push_back(i+5);
	}

	vector vTarget;
	//取两个里面较小的值给目标容器开辟空间
	vTarget.resize(min(v1.size(), v2.size()));

	//返回目标容器的最后一个元素的迭代器地址
	vector::iterator itEnd = 
        set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());

	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:** 

* 求交集的两个集合必须的有序序列
* 目标容器开辟空间需要从**两个容器中取小值**
* set_intersection返回值既是交集中最后一个元素的位置













#### 5.6.2 set_union

**功能描述:**

* 求两个集合的并集



**函数原型:**

- `set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);  `

  // 求两个集合的并集

  // **注意:两个集合必须是有序序列**

  // beg1 容器1开始迭代器
  // end1 容器1结束迭代器
  // beg2 容器2开始迭代器
  // end2 容器2结束迭代器
  // dest 目标容器开始迭代器

  ​

**示例:**

```C++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v1;
	vector v2;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i);
		v2.push_back(i+5);
	}

	vector vTarget;
	//取两个容器的和给目标容器开辟空间
	vTarget.resize(v1.size() + v2.size());

	//返回目标容器的最后一个元素的迭代器地址
	vector::iterator itEnd = 
        set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());

	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:** 

- 求并集的两个集合必须的有序序列
- 目标容器开辟空间需要**两个容器相加**
- set_union返回值既是并集中最后一个元素的位置








#### 5.6.3  set_difference

**功能描述:**

* 求两个集合的差集



**函数原型:**

- `set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest);  `

  // 求两个集合的差集

  // **注意:两个集合必须是有序序列**

  // beg1 容器1开始迭代器
  // end1 容器1结束迭代器
  // beg2 容器2开始迭代器
  // end2 容器2结束迭代器
  // dest 目标容器开始迭代器

  ​

**示例:**

```C++
#include 
#include 

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector v1;
	vector v2;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i);
		v2.push_back(i+5);
	}

	vector vTarget;
	//取两个里面较大的值给目标容器开辟空间
	vTarget.resize( max(v1.size() , v2.size()));

	//返回目标容器的最后一个元素的迭代器地址
	cout << "v1与v2的差集为: " << endl;
	vector::iterator itEnd = 
        set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());
	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;


	cout << "v2与v1的差集为: " << endl;
	itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin());
	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}
```

**总结:** 

- 求差集的两个集合必须的有序序列
- 目标容器开辟空间需要从**两个容器取较大值**
- set_difference返回值既是差集中最后一个元素的位置

 

你可能感兴趣的:(c++)