如何自建数据集

如何自建数据集_第1张图片

(1) 学会使用爬虫爬取图像和视频,从视频中提取图片。

(2) 对获得的图片数据进行整理,包括重命名,格式统一,去重。

爬取图片

有些任务没有直接对应的开源数据集,或者开源数据集中的数据比较少,这就需要我们通过搜索引擎自行爬取图片。

百度图片爬虫

Download images from Google, Bing, Baidu. 谷歌、百度、必应图片下载

Google, Naver multiprocess image web crawler (Selenium)

数据集整理

爬取的如果是视频需要先转换成图片,如果是图片就要做好统一格式、数据清洗的工作。

视频转换成图片

使用爬虫爬取数据,如果是视频可以使用 python getimagefromvideo.py 将视频转换为图片

#coding:utf8
import cv2
import dlib
import numpy as np
import sys
import os

video_capture = cv2.VideoCapture(sys.argv[1])
video_id = sys.argv[1].split('.')[0]
os.mkdir(video_id)

count = 0
while True:
    is_sucessfully_read, im = video_capture.read()
    if is_sucessfully_read == False:
        break
    cv2.imwrite(os.path.join(video_id,str(count)+'.jpg'),im)
    print "image shape=",im.shape
    count = count + 1
    print count

统一图片后缀格式

统一后缀格式可以减少以后写数据 API 时的压力,也可以测试图片是不是可以正常的读取,及时防止未知问题的出现,这很重要。

使用 python reformat_image.py 将图片全部转换为 jpg 格式,这也是所有框架支持的格式。

import os
import sys
import cv2
import numpy as np

def listfiles(rootDir):
    list_dirs = os.walk(rootDir)
    for root, dirs, files in list_dirs:
        for d in dirs:
            print os.path.join(root,d)
        for f in files:
                
            fileid = f.split('.')[0] 

            filepath = os.path.join(root,f)
            try:
                src = cv2.imread(filepath,1)
                print "src=",filepath,src.shape
                os.remove(filepath)
                cv2.imwrite(os.path.join(root,fileid+".jpg"),src)
            except:
                os.remove(filepath)
                continue

listfiles(sys.argv[1])

按格式重命名图片

统一格式的命名有利于区分和整理数据

mkdir tmp
./rename_files_function.sh  ./tmp/ 
i=0
dir=$1
resultdir=$2
app=$3
for file in $dir""* 
do 
	arr=$(echo $file | tr "/" "\n")
	for x in $arr
	do
		filename=$x
	done

	brr=$(echo $filename | tr "." "\n")
	brrs=( $brr )
	fileid=${brrs[0]}

	num=${#brrs[@]}  
	index=$(expr $num - 1)
	fileformat=${brrs[index]}
	
	echo file=""$file
	echo fileid=""$fileid
	echo fileformat=""$fileformat

	if [ $fileformat == jpeg -o $fileformat == png -o $fileformat == jpg -o $fileformat == bmp ] ;
    	then
        #echo "good"
		i=$(expr $i + 1)
		resultfile=$resultdir""$app""$i"".$fileformat
		echo file=""$file"",resultfile=""$resultfile
		mv "$file" "$resultfile"
	else
		echo $file""not good
    fi
done

echo 执行删除""$dir""*
#rm $dir""*
echo 执行mv""$resultdir""*
mv $resultdir""* $dir

去重

如果你使用多个关键词或者使用不同的搜索引擎同样的关键词,或者从视频中提取图片,那么爬取回来的图片很可能有重复或者非常的相似,这样的样本应该被去除。

去除有很多种方法,比如直接比较两幅图像是不是完全相同,通过 hash 等相似度方法来进行相似度,这里我们提供一个方法,利用相似度来进行去重。

# sudo pip install python-Levenshtein
conda install -c conda-forge python-levenshtein 
python remove_repeat.py 

https://anaconda.org/conda-forge/python-levenshtein
#!/usr/bin/env python
#coding:utf8
import math

from PIL import Image
import Levenshtein

class BWImageCompare(object):
    """Compares two images (b/w)."""

    _pixel = 255
    _colour = False

    def __init__(self, imga, imgb, maxsize=64):
        """Save a copy of the image objects."""

        sizea, sizeb = imga.size, imgb.size

        newx = min(sizea[0], sizeb[0], maxsize)
        newy = min(sizea[1], sizeb[1], maxsize)

        # Rescale to a common size:
        imga = imga.resize((newx, newy), Image.BICUBIC)
        imgb = imgb.resize((newx, newy), Image.BICUBIC)

        if not self._colour:
            # Store the images in B/W Int format
            imga = imga.convert('I')
            imgb = imgb.convert('I')

        self._imga = imga
        self._imgb = imgb

        # Store the common image size
        self.x, self.y = newx, newy

    def _img_int(self, img):
        """Convert an image to a list of pixels."""

        x, y = img.size

        for i in xrange(x):
            for j in xrange(y):
                yield img.getpixel((i, j))

    @property
    def imga_int(self):
        """Return a tuple representing the first image."""

        if not hasattr(self, '_imga_int'):
            self._imga_int = tuple(self._img_int(self._imga))

        return self._imga_int

    @property
    def imgb_int(self):
        """Return a tuple representing the second image."""

        if not hasattr(self, '_imgb_int'):
            self._imgb_int = tuple(self._img_int(self._imgb))

        return self._imgb_int

    @property
    def mse(self):
        """Return the mean square error between the two images."""

        if not hasattr(self, '_mse'):
            tmp = sum((a-b)**2 for a, b in zip(self.imga_int, self.imgb_int))
            self._mse = float(tmp) / self.x / self.y

        return self._mse

    @property
    def psnr(self):
        """Calculate the peak signal-to-noise ratio."""

        if not hasattr(self, '_psnr'):
            self._psnr = 20 * math.log(self._pixel / math.sqrt(self.mse), 10)

        return self._psnr

    @property
    def nrmsd(self):
        """Calculate the normalized root mean square deviation."""

        if not hasattr(self, '_nrmsd'):
            self._nrmsd = math.sqrt(self.mse) / self._pixel

        return self._nrmsd

    @property
    def levenshtein(self):
        """Calculate the Levenshtein distance."""

        if not hasattr(self, '_lv'):
            stra = ''.join((chr(x) for x in self.imga_int))
            strb = ''.join((chr(x) for x in self.imgb_int))

            lv = Levenshtein.distance(stra, strb)

            self._lv = float(lv) / self.x / self.y

        return self._lv


class ImageCompare(BWImageCompare):
    """Compares two images (colour)."""

    _pixel = 255 ** 3
    _colour = True

    def _img_int(self, img):
        """Convert an image to a list of pixels."""

        x, y = img.size

        for i in xrange(x):
            for j in xrange(y):
                pixel = img.getpixel((i, j))
                yield pixel[0] | (pixel[1]<<8) | (pixel[2]<<16)

    @property
    def levenshtein(self):
        """Calculate the Levenshtein distance."""

        if not hasattr(self, '_lv'):
            stra_r = ''.join((chr(x>>16) for x in self.imga_int))
            strb_r = ''.join((chr(x>>16) for x in self.imgb_int))
            lv_r = Levenshtein.distance(stra_r, strb_r)

            stra_g = ''.join((chr((x>>8)&0xff) for x in self.imga_int))
            strb_g = ''.join((chr((x>>8)&0xff) for x in self.imgb_int))
            lv_g = Levenshtein.distance(stra_g, strb_g)

            stra_b = ''.join((chr(x&0xff) for x in self.imga_int))
            strb_b = ''.join((chr(x&0xff) for x in self.imgb_int))
            lv_b = Levenshtein.distance(stra_b, strb_b)

            self._lv = (lv_r + lv_g + lv_b) / 3. / self.x / self.y

        return self._lv


class FuzzyImageCompare(object):
    """Compares two images based on the previous comparison values."""

    def __init__(self, imga, imgb, lb=1, tol=15):
        """Store the images in the instance."""

        self._imga, self._imgb, self._lb, self._tol = imga, imgb, lb, tol

    def compare(self):
        """Run all the comparisons."""

        if hasattr(self, '_compare'):
            return self._compare

        lb, i = self._lb, 2

        diffs = {
            'levenshtein': [],
            'nrmsd': [],
            'psnr': [],
        }

        stop = {
            'levenshtein': False,
            'nrmsd': False,
            'psnr': False,
        }

        while not all(stop.values()):
            cmp = ImageCompare(self._imga, self._imgb, i)

            diff = diffs['levenshtein']
            if len(diff) >= lb+2 and \
                abs(diff[-1] - diff[-lb-1]) <= abs(diff[-lb-1] - diff[-lb-2]):
                stop['levenshtein'] = True
            else:
                diff.append(cmp.levenshtein)

            diff = diffs['nrmsd']
            if len(diff) >= lb+2 and \
                abs(diff[-1] - diff[-lb-1]) <= abs(diff[-lb-1] - diff[-lb-2]):
                stop['nrmsd'] = True
            else:
                diff.append(cmp.nrmsd)

            diff = diffs['psnr']
            if len(diff) >= lb+2 and \
                abs(diff[-1] - diff[-lb-1]) <= abs(diff[-lb-1] - diff[-lb-2]):
                stop['psnr'] = True
            else:
                try:
                    diff.append(cmp.psnr)
                except ZeroDivisionError:
                    diff.append(-1)  # to indicate that the images are identical

            i *= 2

        self._compare = {
            'levenshtein': 100 - diffs['levenshtein'][-1] * 100,
            'nrmsd': 100 - diffs['nrmsd'][-1] * 100,
            'psnr': diffs['psnr'][-1] == -1 and 100.0 or diffs['psnr'][-1],
        }

        return self._compare

    def similarity(self):
        """Try to calculate the image similarity."""

        cmp = self.compare()

        lnrmsd = (cmp['levenshtein'] + cmp['nrmsd']) / 2
        return lnrmsd
        return min(lnrmsd * cmp['psnr'] / self._tol, 100.0)  # TODO: fix psnr!


if __name__ == '__main__':

    import sys
    import os
    
    srcimages = os.listdir(sys.argv[1])
    srcimages.sort()
   
    tot = len(srcimages)
    tot = (tot ** 2 - tot) / 2

    print 'Comparing %d images:' % tot
	
    images = {}

    ###向后删除图片
    similarity_thresh = 0.5 ##相似度阈值,超过即判断为相同图片
    i = 0
    while(i < len(srcimages)-1):
        print "i=", i,"num of srcimages",len(srcimages)

        imga = Image.open(os.path.join(sys.argv[1],srcimages[i]))
        imgb = Image.open(os.path.join(sys.argv[1],srcimages[i+1]))
        cmp = FuzzyImageCompare(imga, imgb)
        sim = cmp.similarity() / 100
        print "image ",os.path.join(sys.argv[1],srcimages[i])," and image",os.path.join(sys.argv[1],srcimages[i+1])," sim=",sim
        if sim > similarity_thresh:
            print "delete ",os.path.join(sys.argv[1],srcimages[i+1])
            os.remove(os.path.join(sys.argv[1],srcimages[i+1]))
            srcimages.pop(i+1)
        else:
            i = i+1 

    '''
    results, i = {}, 1
    for namea, imga in images.items():
        for nameb, imgb in images.items():
            if namea == nameb or (nameb, namea) in results:
                continue
            print ' * %2d / %2d:' % (i, tot),
            print namea, nameb, '...',
            cmp = FuzzyImageCompare(imga, imgb)
            sim = cmp.similarity()
            results[(namea, nameb)] = sim
            print '%.2f %%' % sim
            i += 1
    res = max(results.values())
    imgs = [k for k, v in results.iteritems() if v == res][0]
    print 'Most similar images: %s %s (%.2f %%)' % (imgs[0], imgs[1], res)
    
    '''

在此之后还需要自己手动筛选图片,工作量其实也不小,不过经过去重还是可以减少不少工作量的。

数据集标注

爬取的图片需要自己标注,可以使用下面这些标注工具。

https://github.com/tzutalin/labelImg

LabelImg is a graphical image annotation tool and label object bounding boxes in images https://youtu.be/p0nR2YsCY_U

https://github.com/wkentaro/labelme

Image Polygonal Annotation with Python (polygon, rectangle, circle, line, point and image-level flag annotation).

https://github.com/Microsoft/VoTT

Visual Object Tagging Tool: An electron app for building end to end Object Detection Models from Images and Videos.

数据集划分

一般会按照 8:1:1 将数据集划分为训练集、验证集、测试集。这个要根据自己的情况编写 shell 脚本,下面是我用 darknet 训练 yolov3 模型时划分数据的脚本。

#!/bin/sh

if [ $# != 1 ];then
    echo "Usage: $0 "
    exit -1
fi

path=$1

for sub_dir in `ls $path`
    do
        # 获取子文件夹的全路径
        sub_dir_path=$path/$sub_dir
        if [ -d $sub_dir_path ]
            then
                # 将子目录下所有文件移动到父目录中
                `mv $sub_dir_path/* $path`
                # 删除子目录
                `rm -rf $sub_dir_path`
        fi

        # 给所有文件添加前缀

    done

`rm tmp.txt`
# 将文件夹下指定类型的文件写到文件中
# ***** 问题:最后会有个空行 *****
# 图片文件存在对应的 txt 文件,则将图片路径追加到 tmp.txt 文件中
for image in `find $path | grep -E 'jpg|png|JPEG|JPG|PNG'`
do
    
    txt=${image%.*}".txt"

    if [ -f $txt ]
        then
            echo ${image} 
            `echo ${image} >> tmp.txt`
    fi
    
done

# 将路径 8:1:1 放到 train.txt,val.txt,test.txt
# 1. 计算 tmp,txt 文件行数
# 2. 计算得出分配到各个文件的行号
# 3. 将对应行数的内容写到对应文件夹中
line=`cat tmp.txt | wc -l`
line1=$(($line/10*8))
line2=$(($line/10*8+line/10+1))

`sed -n 1,${line1}p tmp.txt >> train.txt`
`sed -n $((${line1}+1)),${line2}p tmp.txt >> val.txt`
`sed -n $((${line2}+1)),$((${line}-1))p tmp.txt >> test.txt`

yolov3 的标注格式如下所示

9 0.732955 0.591102 0.270317 0.193503

统计标签的时候可以使用

awk '{print $1}' *.txt | sort -g | uniq -c

以上就是自己建立一个数据集的流程:爬取图片->整理图片->标注图片->训练。

你可能感兴趣的:(深度学习)