- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- 《Operating System Concepts》阅读笔记:p460-p4470
操作系统
《OperatingSystemConcepts》学习第36天,p460-p4470总结,总计11页。一、技术总结无。二、英语总结(生词:3)1.lifespan(1)lifespan:life+span("theperiodoftimethatsthexistsorhappens")c.也写作life-span,thelengthoftimeforwhichathingexists(寿命)。(2
- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- COMP 5076 Problem Solving in the Digital Age
后端
COMP5076ProblemSolvingintheDigitalAgeAssignment1–Wizard-of-OzPaperPrototypeUniSASTEMTheUniversityofSouthAustralia2025SP2Warning:ThismaterialhasbeenreproducedandcommunicatedtoyoubyoronbehalfoftheUniver
- CVPR2025 | 对抗样本&智能安全方向论文汇总 | 持续更新中~
四口鲸鱼爱吃盐
文献阅读安全transformer深度学习对抗样本神经网络视觉语言模型后门攻击
汇总结果来源:CVPR2025AcceptedPapers若文中出现的论文链接和GitHub链接点不开,则说明还未公布,在公布后笔者会及时添加.若笔者未及时添加,欢迎读者告知.文章根据题目关键词搜索,可能会有遗漏.若笔者出现遗漏,欢迎告知.部分文章还未公布正文,只有名称.MindtheGap:通过查询更新分析检测正在进行中的黑盒对抗攻击MindtheGap:DetectingBlack-boxAd
- GS-SLAM论文阅读笔记-MGSO
zenpluck
GS论文阅读论文阅读笔记
前言MGSO首字母缩略词是直接稀疏里程计(DSO),我们建立的光度SLAM系统和高斯飞溅(GS)的混合。这应该是第一个前端用DSO的高斯SLAM,不知道这个系统的组合能不能打得过ORB-SLAM3,以及对DSO会做出怎么样的改进以适应高斯地图,接下来就看一下吧!GishelloG^s_ihelloGishello我是红色文章目录前言1.背景介绍2.关键内容2.1SLAMmodule2.2Dense
- 《Operating System Concepts》阅读笔记:p449-p459
操作系统
《OperatingSystemConcepts》学习第35天,p449-p459总结,总计11页。一、技术总结1.NVM&SSDFlash-memory-basedNVMisfrequentlyusedinadisk-drive-likecontainer,inwhichcaseitiscalledasolid-statedisk(SSD)(Figure11.3)。2.HDDScheduling
- ACI EP Learning Whitepaper 1. ACI EP组件
m0_54931486
思科ACI网络思科ACIEndpointACIfabricNexusEP学习
1.ACIEndpointACI网络架构的Endpoint表整合了传统MAC地址表和ARP表的功能。其核心机制是通过硬件层直接学习数据包的源MAC地址与IP地址映射关系,摒弃了传统ARP协议依赖广播请求获取下一跳MAC地址的模式。这种设计优化体现在两方面:1)减少控制面ARP流量处理带来的资源消耗;2)基于终端实际流量即可实时感知主机IP/MAC地址的拓扑迁移,无需依赖GARP通告即可实现终端移动
- 【DeepSeek干货总结】对不同类型学术内容进行润色的顶级提示词汇总!
AIWritePaper官方账号
DeepSeekPromptAIWritePaperAIWritePaperdeepseek深度学习人工智能AIGC论文润色
目录1.英文润色2.中文润色3.SCI润色4.润色Prompt汇总连贯性与句子逻辑提示词多参考版本提示词语法矫正提示词润色内容定位提示词修改建议提示词大家好这里是AIWritePaper官方账号!AIWritePaper官网AIWritePaper宝子们在写学术论文的过程中要想让DeepSeek发挥出最佳效能,尤其在进行文本润色时,精确和具体的提示词至关重要。很多宝子们在请求DeepSeek文本润
- 《Operating System Concepts》阅读笔记:p359-p388
操作系统
《OperatingSystemConcepts》学习第32天,p359-p388总结,总计30页。一、技术总结1.paging(1)定义Acommonmemorymanagementschemethatavoidsexternalfragmentationbysplittingphysicalmemoryintofixed-sizedframesandlogicalmemoryintoblock
- 《Operating System Concepts》阅读笔记:p389-p407
操作系统
《OperatingSystemConcepts》学习第33天,p389-p407总结,总计19页。一、技术总结1.virtualmemeory(1)定义Atechniquethatallowstheexecutionofaprocessthatisnotcompletelyinmemory.Also,separationofcomputermemoryaddressspacefromphysic
- 图形编辑器基于Paper.js教程25:材料测试矩阵功能的实现
拿我格子衫来
激光切割图形编辑器Paper.js矩阵线性代数图像处理javascript编辑器前端
最近做了一个材料测试矩阵的需求,现在已经上线了,现在来回顾总结一下,有哪些做的好的,有哪些做的不好的。材料测试矩阵在测试激光头在某一种材料上的表现,很有必要,如果你在一种新的材料上进行加工时,最好先做一次材料测试矩阵,挑选出合适的功率和速度。材料测试矩阵的表单比较多横坐标是功率,纵坐标是速度。最终雕刻效果是会把雕刻的木板切割下来。整个表单需要设置,雕刻模式还是切割模式,然后设置最小最大速度,最小最
- 大模型黑书阅读笔记--第一章
53年7月11天
大模型黑书笔记人工智能自然语言处理语言模型
cnn,rnn达到了极限,憋了三十年(这段时间已经有注意力了,并且注意力也加到了cnn,rnn中,但没啥进展)憋来了工业化最先进的transformertransformer的核心概念可以理解为混合词元(token),rnn通过循环函数顺序分析次元,而transformer模型不是顺序分析,而是将每个词元与序列中其他词元关联起来。为突破cnn的极限,注意力的概念出来了:cnn做序列处理时只关注最后
- 《Operating System Concepts》阅读笔记:p354-p358
操作系统
《OperatingSystemConcepts》学习第31天,p354-p358总结,总计5页。一、技术总结1.logicaladdress&virtualaddressBindingaddressesateithercompileorloadtimegeneratesidenticallogicalandphysicaladdresses.However,theexecution-timead
- 《Operating System Concepts》阅读笔记:p331-p353
操作系统
《OperatingSystemConcepts》学习第30天,p331-p353总结,总计23页。一、技术总结1.lockdep工具2.claimedge3.banker'salgorithmAdeadlockavoidancealgorithm,lessefficientthantheresource-allocationgraphschemebutabletodealwithmultiple
- Python Turtle 海龟画图 官方文档
Leleprogrammer
python开发语言后端turtle
turtle---海龟绘图源码:Lib/turtle.py概述海龟绘图很适合用来引导孩子学习编程。最初来自于WallyFeurzeig,SeymourPapert和CynthiaSolomon于1967年所创造的Logo编程语言。请想象绘图区有一只机器海龟,起始位置在x-y平面的(0,0)点。先执行importturtle,再执行turtle.forward(15),它将(在屏幕上)朝所面对的x轴
- 玩转Python绘图利器——Turtle库
Ai_绘画小南
python开发语言信息可视化
Turtle是Python语言中的一个重要的绘图库,它提供了简单易用的绘图功能,适用于所有年龄段的程序员。本文将详细介绍Turtle库的使用方法,并给出多种实例,帮助读者快速上手。一、Turtle库简介Turtle库最早由WallyFeurzeig、SeymourPapert和CynthiaSolomon等人在1960年代末期开发,目的是为了教学和艺术创作。它利用海龟的图形来操作画笔,通过简单的指
- 《Operating System Concepts》阅读笔记:p286-p308
操作系统
《OperatingSystemConcepts》学习第28天,p286-p308总结,总计23页。一、技术总结1.reentrantlock(可重入锁)(1)为什么称为reentrantlock?AthreadacquiresaReentrantLocklockbyinvokingitslock()method.Ifthelockisavailable—orifthethreadinvoking
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- 《Operating System Concepts》阅读笔记:p309-p330
操作系统
《OperatingSystemConcepts》学习第29天,p309-p330总结,总计22页。一、技术总结1.Python中的并发编程(1)semaphoreclassthreading.Semaphore(value=1)。(2)conditionvariableclassthreading.Condition(lock=None)书上使用的是Java,因本人在开发工作中使用的是Pytho
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- 《Operating System Concepts》阅读笔记:p272-p285
操作系统
《OperatingSystemConcepts》学习第27天,p272-p285总结,总计14页。一、技术总结1.semaphoreAsemaphoreSisanintegervariablethat,apartfrominitialization,isaccessedonlythroughtwostandardatomicoperations:wait()andsignal().2.monit
- LLM填坑:训练自己的分词器-Tokenizer
微风❤水墨
LLM&AIGC&VLP人工智能
说明:文本搬运以下文章,略微调整,有需求可参考原文。paper:https://zhuanlan.zhihu.com/p/625715830code:Chatterbox/example/TrainTokenizersExample/train_tokenizers.pyatmain·enze5088/Chatterbox·GitHubHuaggingface教程:
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- FLOW MATCHING FOR GENERATIVE MODELING 阅读笔记
冰冰冰泠泠泠
笔记机器学习算法
论文提出了一种新的生成模型。论文的目的是给定一个目标分布,有目标分布的一定量的样本,但是不知道目标分布的概率密度函数,学习一个模型能生成服从目标分布的新样本。FlowMatching(FM)是一种训练连续标准化流ContinuousNormalizingFlow(CNF)的方法。FM是一种通用的方法。FM可以用于训练扩散路径,用FM训练扩散路径更稳定。FM也可以用于训练其他路径,一个例子是训练最优
- 《Operating System Concepts》阅读笔记:p228-p257
codists
读书笔记操作系统
《OperatingSystemConcepts》学习第25天,p228-p257总结,总计30页。一、技术总结1.algorithmevaluation评估CPU调度算法需要考虑的因素有:CPUutilization,responsetime或者throughput。基于以上几个因素,选择依据为:(1)MaximizingCPUutilizationundertheconstraintthatt
- 《Operating System Concepts》阅读笔记:p258-p271
codists
读书笔记操作系统
《OperatingSystemConcepts》学习第26天,p258-p271总结,总计14页。一、技术总结1.criticalsectionAsectionofcoderesponsibleforchangingdatathatmustonlybeexecutedbyonethreadorprocessatatimetoavoidaracecondition.2.Peterson’ssolu
- 《Operating System Concepts》阅读笔记:p208-p227
codists
读书笔记操作系统
《OperatingSystemConcepts》学习第24天,p208-p227总结,总计20页。一、技术总结1.vmstatLinux系统上vmstat命令的作用是“Reportvirtualmemorystatistics”。2.schedulingalgorithms(1)FCFS(first-comefirst-serve)(2)SJF(shortest-job-first)准确的叫法应
- 【华为机考E卷】-“第k个排列”题解思路java
Coder灬永不止步
算法-机考E卷华为java算法
算法每一题,成长每一天~C0E33第k个排列真题链接:【持续更新】2024华为OD机试E卷机考真题库清单(全真题库)思路Javapackagecom.ccr.paper_f;importjava.util.ArrayList;importjava.util.List;importjava.util.Scanner;publicclassC0E33{publicstaticvoidmain(Stri
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比