spark RDD action job的提交过程
以RDD的 count()方法的例子为例,来演示 dag生成提交的过程。
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum
上面直接调用到 runJob的方法
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
// 调用 于 dagScheduler的方法了
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
然后在 dagScheduler 中进行任务的提交
def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
// 提交任务了
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}
然后还是在 dagScheduler 类中进行消息的接收,进行任务的启动
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
// 接收到提交的job任务
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
case StageCancelled(stageId) =>
dagScheduler.handleStageCancellation(stageId)
case JobCancelled(jobId) =>
dagScheduler.handleJobCancellation(jobId)
case JobGroupCancelled(groupId) =>
dagScheduler.handleJobGroupCancelled(groupId)
case AllJobsCancelled =>
dagScheduler.doCancelAllJobs()
case ExecutorAdded(execId, host) =>
dagScheduler.handleExecutorAdded(execId, host)
case ExecutorLost(execId) =>
dagScheduler.handleExecutorLost(execId, fetchFailed = false)
case BeginEvent(task, taskInfo) =>
// 任务的开始了
dagScheduler.handleBeginEvent(task, taskInfo)
case GettingResultEvent(taskInfo) =>
dagScheduler.handleGetTaskResult(taskInfo)
case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
dagScheduler.handleTaskCompletion(completion)
case TaskSetFailed(taskSet, reason, exception) =>
dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
case ResubmitFailedStages =>
dagScheduler.resubmitFailedStages()
}
然后进行 stage job的创建
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
// 接收job任务的提交
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = newResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
// 设置 一个stage对应于那一个job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
// 提交这个Stage了
submitStage(finalStage)
submitWaitingStages()
}
然后进行 ResultStage 对象的创建
private def newResultStage(
rdd: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
jobId: Int,
callSite: CallSite): ResultStage = {
// 拿到依赖的stages
val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, jobId)
val stage = new ResultStage(id, rdd, func, partitions, parentStages, jobId, callSite)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(jobId, stage)
stage
}
可以看到上面会去拿到 Stage的父依赖的相关 parentStages
private def getParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
val parents = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting
val waitingForVisit = new Stack[RDD[_]]
def visit(r: RDD[_]) {
if (!visited(r)) {
visited += r
// Kind of ugly: need to register RDDs with the cache here since
// we can't do it in its constructor because # of partitions is unknown
for (dep <- r.dependencies) {
// 从父依赖当中一步一步回溯
dep match {
case shufDep: ShuffleDependency[_, _, _] =>
// 只有shffle才有stage ?
parents += getShuffleMapStage(shufDep, firstJobId)
case _ =>
waitingForVisit.push(dep.rdd)
}
}
}
}
waitingForVisit.push(rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
parents.toList
}
可以看到上面的 Stage的父网络的生成,其实就是通过RDD的 dependencies 依赖来生成的,就是说 RDD的依赖关系和 stage的依赖关系一致
,然后只有 ShuffleDependency 才生成一个 stage.
private def getShuffleMapStage(
shuffleDep: ShuffleDependency[_, _, _],
firstJobId: Int): ShuffleMapStage = {
shuffleToMapStage.get(shuffleDep.shuffleId) match {
case Some(stage) => stage
case None =>
// We are going to register ancestor shuffle dependencies
getAncestorShuffleDependencies(shuffleDep.rdd).foreach { dep =>
// 之前没有,这个时候才注册
shuffleToMapStage(dep.shuffleId) = newOrUsedShuffleStage(dep, firstJobId)
}
// Then register current shuffleDep 新建一个stage对象出来了
val stage = newOrUsedShuffleStage(shuffleDep, firstJobId)
shuffleToMapStage(shuffleDep.shuffleId) = stage
stage
}
}
可以看到上面的 ShuffleDependency 中,也通过其RDD的 Dependencies 进行stage的生成,
private def newShuffleMapStage(
rdd: RDD[_],
numTasks: Int,
shuffleDep: ShuffleDependency[_, _, _],
firstJobId: Int,
callSite: CallSite): ShuffleMapStage = {
// 从这里看出 stage的网络是通过shuffle依赖进行的
val (parentStages: List[Stage], id: Int) = getParentStagesAndId(rdd, firstJobId)
val stage: ShuffleMapStage = new ShuffleMapStage(id, rdd, numTasks, parentStages,
firstJobId, callSite, shuffleDep)
stageIdToStage(id) = stage
updateJobIdStageIdMaps(firstJobId, stage)
stage
}
可以看到上面 stage的创建,也很明确的依赖于父的 parentStages的,所以这个树状的依赖过程就形成了。
现在相关的依赖 Stage已经创建了,现在就是一个提交的过程了
/** Submits stage, but first recursively submits any missing parents. */
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
// 依赖的父节点已经准备好,所以直接执行当前的节点
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
// 依赖的父的Stage还有些没有准备好,所以在这里直接提交
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
可以看到上面还会先去拿依赖的父的stage,看下是否已经提交过执行没有。
/** Called when stage's parents are available and we can now do its task. */
private def submitMissingTasks(stage: Stage, jobId: Int) {
// 提交还没有执行的任务
logDebug("submitMissingTasks(" + stage + ")")
// Get our pending tasks and remember them in our pendingTasks entry
stage.pendingPartitions.clear()
// First figure out the indexes of partition ids to compute.
// 这里有 ShuffleMapStage 和ResultStage 中还没有执行完成的partition
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
val properties = jobIdToActiveJob(jobId).properties
// 准备开始运行了,先记录一下
runningStages += stage
// 说明spark 的stage 树状依赖关系 只有两种类型 ,shuffle和result,shuffle就是对RDD数据的分片功能 result就是单纯的RDD分片数据的计算
stage match {
case s: ShuffleMapStage =>
// 这里开始提交任务了
outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
case s: ResultStage =>
outputCommitCoordinator.stageStart(
stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
}
// 算出那些分区要执行的,然后同时计算出该在那个节点里面进行执行
val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
stage match {
case s: ShuffleMapStage =>
// 计算这些还没有运行完成的stage,还有这个RDD期望执行的主机节点
partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
case s: ResultStage =>
val job = s.activeJob.get
partitionsToCompute.map { id =>
val p = s.partitions(id)
(id, getPreferredLocs(stage.rdd, p))
}.toMap
}
} catch {
case NonFatal(e) =>
stage.makeNewStageAttempt(partitionsToCompute.size)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
// 先删除这个stage运行中的
runningStages -= stage
return
}
stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
// 这里应该是日志监控来的
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
var taskBinary: Broadcast[Array[Byte]] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
// 从上面可以看到,开始序列化 ShuffleMapTask 和 ResultTask task对象了
val taskBinaryBytes: Array[Byte] = stage match {
case stage: ShuffleMapStage =>
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef).array()
case stage: ResultStage =>
closureSerializer.serialize((stage.rdd, stage.func): AnyRef).array()
}
// 这里进行广播数据操作了
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
return
}
// 这里创建task任务对象了
val tasks: Seq[Task[_]] = try {
stage match {
case stage: ShuffleMapStage =>
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = stage.rdd.partitions(id)
// 这样就创建一个task任务了
new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, stage.internalAccumulators)
}
// 这里就是普通的 RDD 的分片计算 任务了
case stage: ResultStage =>
val job = stage.activeJob.get
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = stage.rdd.partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptId,
taskBinary, part, locs, id, stage.internalAccumulators)
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${e.getStackTraceString}", Some(e))
runningStages -= stage
return
}
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingPartitions ++= tasks.map(_.partitionId)
logDebug("New pending partitions: " + stage.pendingPartitions)
// dag提交任务了,比较关键的一步了
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)
} }
可以看到 stage.findMissingPartitions() 先去拿还没有执行的 RDD 分片数据,
然后再去 partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap 拿该
分片期望执行的进程或者节点地址。
最后创建 ShuffleMapTask或者 ResultTask task任务。
然后把创建的任务进行 taskScheduler.submitTasks 提交上去。