"A new internet watchdog is creating a stir in
Springfield. Mr. X, if that is his real name, has
come up with a sensational scoop."Kent Brockman
There are n SMTP servers connected by network cables. Each of the m cables connects two computers and has a certain latency measured in milliseconds required to send an email message. What is the shortest time required to send a message from server S to server T along a sequence of cables? Assume that there is no delay incurred at any of the servers.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one starts with a line containing n (2<=n<20000), m (0<=m<50000), S (0<=S<n) and T (0<=T<n). S!=T. The next m lines will each contain 3 integers: 2 different servers (in the range [0, n-1]) that are connected by a bidirectional cable and the latency, w, along this cable (0<=w<=10000).
Output
For each test case, output the line "Case #x:" followed by the number of milliseconds required to send a message from S to T. Print "unreachable" if there is no route from S to T.
Sample Input | Sample Output |
3 2 1 0 1 0 1 100 3 3 2 0 0 1 100 0 2 200 1 2 50 2 0 0 1 |
Case #1: 100 Case #2: 150 Case #3: unreachable |
题目大意:第一行四个数据:点的数量n,边的数量m,起点s, 终点f。接下来是m行的边的数据:端点u,端点v,权值val。求s, 到f的最短路径。
解题思路:用floyd或者普通的dijstra会超时,因为点的数量比较多(20000),所以要用vector-邻接表实现dijkstra。
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int INF = 1000005;
const int N = 20005;
int n, m, beg, fin;
int d[N], vis[N];
struct Node {
int d, u;
bool operator < (const Node& rhs) const {
return d > rhs.d;
}
};
struct Edge {
int from, to, dist;
};
vector Edges;
vector G[N];
void init() {
memset(vis, 0, sizeof(vis));
for (int i = 0; i < n; i++) G[i].clear();
Edges.clear();
}
void AddEdge(int from, int to, int dist) {
Edges.push_back((Edge){from, to, dist});
int pos = Edges.size();
G[from].push_back(pos - 1);
}
void dijkstra() {
for (int i = 0; i < n; i++) d[i] = INF;
d[beg] = 0;
priority_queue Q;
Q.push((Node){0, beg});
while (!Q.empty()) {
Node x = Q.top(); Q.pop();
int u = x.u;
if (vis[u]) continue;
vis[u] = 1;
for (int i = 0; i < G[u].size(); i++) {
Edge& e = Edges[G[u][i]];
if (d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
Q.push((Node){d[e.to], e.to});
}
}
}
}
int main() {
int T, Case = 1;
scanf("%d", &T);
while (T--) {
init();
printf("Case #%d: ", Case++);
scanf("%d %d %d %d", &n, &m, &beg, &fin);
for (int i = 0; i < m; i++) {
int u, v, val;
scanf("%d %d %d", &u, &v, &val);
AddEdge(u, v, val);
AddEdge(v, u, val);
}
if (beg > fin) {
int temp = beg;
beg = fin;
fin = temp;
}
dijkstra();
if (d[fin] == INF || d[fin] == 0) {
printf("unreachable\n");
} else {
printf("%d\n", d[fin]);
}
}
return 0;
}