- LeetCode第317题_离建筑物最近的距离
@蓝莓果粒茶
算法leetcodelinux算法c#学习pythonc++
LeetCode第317题:离建筑物最近的距离文章摘要本文详细解析LeetCode第317题"离建筑物最近的距离",这是一道图论和广度优先搜索的问题。文章提供了基于多源BFS的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升图论算法能力的程序员。核心知识点:广度优先搜索、图论、矩阵遍历难度等级:困难推荐人群:具有图论基础,想要提升算法能力的程序员题目描述
- 在mac m1基于llama.cpp运行deepseek
lama.cpp是一个高效的机器学习推理库,目标是在各种硬件上实现LLM推断,保持最小设置和最先进性能。llama.cpp支持1.5位、2位、3位、4位、5位、6位和8位整数量化,通过ARMNEON、Accelerate和Metal支持Apple芯片,使得在MACM1处理器上运行Deepseek大模型成为可能。1下载llama.cppgitclonehttps://github.com/ggerg
- 牛客周赛 Round 56
洋洋的计算机刷题日记
牛客竞赛网比赛刷题算法
牛客周赛Round56A面包店故事链接:https://ac.nowcoder.com/acm/contest/88392/A来源:牛客网题目描述小镇上有一家面包店,面包以元的价格出售,加元可以多加几块培根。小歪带着元来到了面包店,他想知道自己能不能买到加培根的面包?输入描述:在一行上输入三个整数,,(1≤,,≤100)代表面包的价格、培根的价格和小歪带的钱。输出描述:如果小歪能加到培根,在一行上
- Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
网罗开发
Swift算法swift图论
文章目录摘要描述示例题解答案DFS遍历每个连通区域Union-Find(并查集)题解代码分析(Swift实现:DFS)题解代码详解构建邻接表DFS深度优先搜索遍历所有节点示例测试及结果示例1示例2示例3时间复杂度分析空间复杂度分析总结摘要图是算法中最具挑战性的结构之一,而“连通分量”这个词听起来也有点像社交网络里的“圈子”概念。给你一张无向图,节点编号从0到n-1,现在请你找出这个图中到底有多少个
- C++最小生成树算法详解
你的冰西瓜
c++算法图论最小生成树
C++最小生成树算法详解引言在图论中,最小生成树(MinimumSpanningTree,MST)是一个非常重要的概念。对于给定的带权无向连通图,最小生成树是一棵包含图中所有顶点且边权之和最小的树。它在网络设计、电路布线等实际应用中具有广泛的意义。本文将详细介绍两种常见的最小生成树算法:Prim算法和Kruskal算法,并提供C++实现代码。一、最小生成树的基本概念1.1生成树一个连通图的生成树是
- 洛谷 P2107 小Z的AK计划
zhanghengjie20120214
算法c++贪心算法
题目描述在小Z的家乡,有机房一条街,街上有很多机房。每个机房里都有一万个人在切题。小Z刚刷完CodeChef,准备出来逛逛。机房一条街有n个机房,第i个机房的坐标为xi,小Z的家坐标为0。小Z在街上移动的速度为1,即从x1到x2所耗费的时间为∣x1−x2∣。每个机房的学生数量不同,ACM题目水平也良莠不齐。小Z到达第i个机房后,可以花ti的时间想题,然后瞬间AK;当然,也可以过机房而不入。小Z现在
- 算法学习笔记:10.Prim 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
呆呆企鹅仔
算法学习算法学习笔记JavaPrim
在图论的世界里,最小生成树(MinimumSpanningTree,MST)是一个至关重要的概念,它在通信网络设计、电路布线、交通规划等领域有着广泛的应用。求解最小生成树的算法中,Prim算法以其独特的“逐步扩展”思想占据着重要地位。Prim算法的基本概念在正式介绍Prim算法之前,我们先回顾一下最小生成树的定义:对于一个具有n个顶点的带权连通图,其最小生成树是包含所有n个顶点的一棵无环子图,且该
- SIGMOD论文解读|在自下而上优化中添加布隆过滤器
Gauss松鼠会
技术交流数据库gaussdbdatabase
6月22日至27日,2025ACMSIGMOD/PODS国际学术会议在德国柏林举行。25日,华为多伦多分布式调度和数据引擎实验室主任工程师TimothyZeyl受邀出席,就入选的《IncludingBloomFiltersinBottom-upOptimization》论文进行了解读该论文创新性地首次提出了在自下而上的优化器的基于成本的优化过程中添加布隆过滤器(BloomFilter)的技术。该技
- 深入DP!!!!!!!!!!!!!!-----------------------“DP就像人生:你的当前状态由过去的选择决定,而你的选择将影响未来状态。定义好你的状态转移方程,找到最优的人生路径!“
zwenqiyu
算法
"动态规划不是魔法,而是将大问题拆解成小问题的艺术"——一位ACMer的深夜顿悟暑假集训我们过关斩将,来到了线性动态规划和前缀优化这里,不好,是让人心惊胆战的DP!!!不同于其他题解,我们在详说DP之前,我们先说说记忆化搜索。什么是记忆化搜索?记忆化搜索(Memoization)是一种优化递归算法的技术,通过存储已计算的子问题结果,避免重复计算。它是自顶向下的动态规划实现方式。模板题斐波那契数列问
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 搜索之BFS
Luther coder
宽度优先c++
目录一.BFS简介二.BFS主要应用和实现三.典型例题(1)P1443马的遍历-洛谷(2)P8693[蓝桥杯2019国AC]大胖子走迷宫-洛谷四.总结一.BFS简介BFS(图论):广度优先搜索,是一种用于遍历或搜索树或图的算法。所谓广度优先,就是说按照圈层搜索。二.BFS主要应用和实现在搜索算法中,该BFS常常指利用队列实现广度优先搜索,从而寻找最短距离。与图论中的BFS算法有一定相似之处,但并不
- 怀化学院2024年ACM基地第二轮招新机试题解
啊这.-
算法
比赛地址:https://www.nowcoder.com/acm/contest/96304。【邀请码:acm20241115】A宋学长买书#include#defineintlonglongconstintN=1e6+10;inta[N];intmin(inta,intb){if(a=m)pl=min(pl,x);elseans+=x,cnt++;}ans+=pl-1;if(cnt>m)pri
- 使用zerotier one实现内网穿透及MOON架设过程整理
首先要安装zerotier-one这个软件包,如果是ArchLinux,直接运行(可直接复制不带$符号):$sudopacman-Szerotier-one如果是Ubuntu/Debian/CentOS,则运行:$curl-shttps://install.zerotier.com/|sudobash注:如果是Windows或者macOS、Android、iOS等,那么可以在https://www
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- gesp c++ 八级知识点
山中习静观潮槿
Gespc++考级知识点c++代理模式开发语言
以下是根据GESPC++八级考试大纲的超详细知识点解析与代码实现,涵盖计数原理、排列组合、图论算法、倍增法等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、计数原理1.1加法原理与乘法原理概念:加法原理:完成一件事有多个互斥方案,总方法数为各方案方法数之和。乘法原理:完成一件事需多个独立步骤,总方法数为各步骤方法数的乘积。应用场景:加法原理:选择不同类别的路径或物
- gesp c++ 七级知识点
以下是根据GESPC++七级考试大纲的超详细知识点解析与代码实现,涵盖数学函数、复杂动态规划、图论算法、哈希表等核心内容,每个知识点均包含概念说明、应用场景、使用方法、优缺点及完整代码示例。一、数学库函数1.1三角函数概念:sin(x)、cos(x)、tan(x)分别计算弧度为x的正弦、余弦、正切值。应用场景:几何计算、物理运动模拟、图形学。代码示例:#include#includeusingna
- 数组排序求最小交换次数
Unlimitedz
图论算法数据结构
F-松鼠排序_2023河南萌新联赛第(一)场:河南农业大学(nowcoder.com)题意:给定长度为n的数组,每次可以任意交换两个元素,求将数组变为升序的最小交换次数。一道很经典的题目了,本质上是个图论问题。我们可以遍历数组,对于每个元素,我们将该元素和它正确的位置建边,最后一定是1∼n个环(自环也算)。对于有k个元素的环,最少交换次数为k−1。假设共有p个环,对于第i个环,有ki个元素,则它的
- 图论基础算法入门笔记
图论基础与建图图的定义图是由若干给定的顶点及连接两顶点的边所构成的图形,顶点用于代表事物,连接两顶点的边用于表示两个事物间的特定关系。建图的概念建图是指找到合适的方法将图表示出来。图的存储方法直接存边存储方式:直接使用一个数组,将边的起点与终点信息存储。代码实现:#includeusingnamespacestd;structEdge{intu,v;//边的起点和终点};intn,m;//n为顶点
- 算法学习笔记:7.Dijkstra 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
在计算机科学领域,图论算法一直占据着重要地位,其中Dijkstra算法作为求解单源最短路径问题的经典算法,被广泛应用于路径规划、网络路由等多个场景。无论是算法竞赛、实际项目开发,还是计算机考研408的备考,Dijkstra算法都是必须掌握的核心内容。一、Dijkstra算法的基本概念Dijkstra算法是由荷兰计算机科学家EdsgerW.Dijkstra在1956年提出的,用于解决带权有向图或无向
- #19ACM第三次周赛补题赛de题解呐#
桦hua呐
秃头hua的题解
我真的太low了,谁能教教我C.D.E.?A.我是个签到题!这题的确签到,一共y/n两种情况,运气不好WA一次,运气好直接过,但相信聪明的你们,一定去探索了方程式的规律,才不会像我一样盲猜n就对了,嘿嘿,看题↓描述:判断x^4+y^4=z^4,x,y,z是否存在正整数解输入:无输出:存在输出“YES”,不存在输出"NO"直接送上hua的无脑代码↓#includeintmain(){printf("
- #19ACM第五次周赛补题赛de题解呐#
桦hua呐
秃头hua的题解
磕出来的所有题唉……A.防AK题目——超难系列这是一道Helloword题,题面花里胡哨,但就想让你输出一个“Accepted!!!”。#includeintmain(){printf("Accepted!!!");return0;}B.Fenoix超厌恶xxx这一题呢判断几种可能情况来进行即可,先看题面:描述:Fenoix觉得xxx是一个非常怪的人,因为他特别厌恶xxx这样的人。现在他给你出一道
- Android Telephony 网络状态中的 NAS 信息
Dic-
#AndroidTelephony#计算机网络网络通信Telephony自学笔记Android计算机网络移动网络非接入层
引言上层如何拿到NAS信息?那么首先要知道什么是NAS。领域知识术语表通信网络术语英文缩写英文全称中文含义NASNon-AccessStratum非接入层RRCRadioResourceControl无线资源控制层PDCPPacketDataConvergenceProtocol分组数据汇聚协议层RLCRadioLinkControl无线链路控制层MACMediumAccessControl媒体接
- HDU杭电OJ基础100题2010-2019(C语言版)
雁于飞
算法专栏c语言开发语言
文章目录@[TOC](文章目录)[原题出处](https://acm.hdu.edu.cn/listproblem.php?vol=11)前言p2010.水仙花数问题描述解题思路代码核心思想:p2011多项式求和问题描述代码p2003求绝对值问题描述解题思路代码扩展p2004成绩转换问题描述解题思路代码重点p2005第几天问题描述解题思路代码扩展p2006求奇数的乘积p2007平方和与立方和问题描
- 计算机网络总结
谭嘉俊
计算机网络
本文章讲解的内容是计算机网络总结。基本术语节点(node):在电信网络中,一个节点是一个连接点,表示一个再分发点(redistributionpoint)或一个通信端点(一些终端设备),节点的定义依赖于网络和协议层,一个物理网络节点是一个连接到网络的有源电子设备,能够通过通信通道发送、接收或转发信息,要注意的是,无源分发点(例如:配线架或接插板)不是节点,在网络理论或图论中,术语节点表示网络拓扑中
- WIN11+VSCODE搭建的c/c++环境调试报错解决
xtmatao
C语言编程vscodec语言c++
解决调试报错前面win11+vscode搭建的c/c++环境,ctrl+shift+B生成正常,cttl+F5运行正常。今天打断点逐步调试时报错,提示找不到库文件。解决方案如下:下载mingw-w64源码库:(两种途径)通过MSYS2UCRT64终端下载pacman-Sgit#安装gitgitclonehttps://git.code.sf.net/p/mingw-w64/mingw-w64#下载
- 图论算法的大家庭——c++中的图论算法
imlarry0616
深度优先算法图论
图论算法是处理图结构问题的核心工具,广泛应用于路径规划、社交网络分析、计算机网络等领域。以下从基础概念、经典算法及其代码实现展开详细介绍,涵盖DFS、BFS、最短路径、最小生成树等核心内容,并附C++代码示例及注释。一、图的基础概念图的定义:由顶点(Vertex)集合V和边(Edge)集合E组成,记作G=(V,E)。分类:无向图:边无方向(如社交网络中的朋友关系)。有向图:边有方向(如网页链接关系
- 手动续期证书后自动上传到阿里云
要将acme.sh续期后的脚本自动传到阿里云上,可以按照以下步骤进行:安装阿里云CLI:在服务器上安装阿里云命令行工具(CLI),以便能够通过命令行与阿里云进行交互。可以使用以下命令进行安装:wgethttps://aliyuncli.alicdn.com/aliyun-cli-linux-latest-amd64.tgz&&tarxzvfaliyun-cli-linux-latest-amd64
- Mac mini 跑 DeepSeek R1 及 QwQ-32B模型实测报告
强哥之神
GPTmacosGPUdeepseek人工智能语言模型LLM
测试对象:2025款Macmini(M4/M4Pro芯片)测试模型:DeepSeek-R1(14B/32B)、QwQ-32B(原版/量化版)测试目标:硬件性能适配性、推理速度、内存占用及优化方案一、Macmini硬件配置概览配置项M4基础款(16GB)M4Pro高配(32GB/64GB)芯片M4(10核CPU/10核GPU)M4Pro(14核CPU/20核GPU)内存16GB统一内存32GB/64
- 项目实战复盘:跨平台团队如何组合工具完成 iOS App 上架全流程
2501_91600889
httpudphttpswebsocket网络安全网络协议tcp/ip
在一次使用Flutter开发的跨平台项目中,我们团队要将一款教育类App同时上线Android与iOS。团队成员清一色Windows/Linux用户,仅有远程使用的一台旧款Macmini,资源非常有限。这篇文章将还原我们当时iOS上架的完整流程,并分享我们是如何组合使用不同工具,各自完成关键环节,不依赖完整Mac环境也能顺利上线AppStore的经验。阶段一:准备开发者证书和描述文件(Provis
- 图论基础知识 深度优先(Depth First Search, 简称DFS),广度优先(Breathe First Search, 简称BFS)
mmaerd
Leetcode刷题学习记录深度优先图论宽度优先机考
图论基础知识学习记录自代码随想录dfs与bfs区别dfs是沿着一个方向去搜,不到黄河不回头,直到搜不下去了,再换方向(换方向的过程就涉及到了回溯)。bfs是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索方向更像是广度,四面八方的搜索过程。深度优先搜索理论(DepthFirstSearch,简称DFS)搜索方向,是认准一个方向搜,直到碰壁之后再换方向换
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f