【矩阵乘法 模版】洛谷_1939 矩阵加速(数列)

题意

给出一个序列 A A A,我们知道:
A 1 = A 2 = A 3 = 1 A_1=A_2=A_3=1 A1=A2=A3=1
A N = A N − 1 + A N − 3 A_N=A_{N-1}+A_{N-3} AN=AN1+AN3
T T T次询问,求 A N A_N AN

思路

我们可以设一个矩阵 A A A为:
[ A N − 3 A N − 2 A N − 1 ] \begin{bmatrix} A_{N-3}&A_{N-2}&A_{N-1} \end{bmatrix} [AN3AN2AN1]
那么我们要把这个矩阵变成:
[ A N − 2 A N − 1 A N ] \begin{bmatrix} A_{N-2}&A_{N-1}&A_{N} \end{bmatrix} [AN2AN1AN]
我们就可以乘上这个矩阵:
[ 0 0 1 1 0 0 0 1 1 ] \begin{bmatrix} 0&0&1 \\ 1&0&0 \\ 0&1&1 \end{bmatrix} 010001101
然后我们就可以做了,特判 N < 3 N<3 N<3

代码

#include
#include

const int mod = 1e9 + 7;
int T, N;
struct matrix{
    int a[4][4];
};

matrix operator *(matrix &a, matrix &b){
    matrix c;
    memset(c.a, 0, sizeof(c.a));
    for (int i = 1; i <= 3; i++)
        for (int j = 1; j <= 3; j++)
            for (int k = 1; k <= 3; k++)
                c.a[i][j] = (c.a[i][j] + (long long)a.a[i][k] * b.a[k][j]) % mod;
    return c;
}

void ksm(int b) {
    matrix A;
    memset(A.a, 0, sizeof(A.a));
    A.a[1][3] = 1;
   	A.a[2][1] = 1;
    A.a[3][2] = 1;
    A.a[3][3] = 1;
    matrix r = A;
    for (; b; b >>= 1) {
        if (b & 1) r = r * A;
        A = A * A;
    }
    int ans[4];
    memset(ans, 0, sizeof(ans));
    for (int j = 1; j <= 3; j++)
        for (int k = 1; k <= 3; k++)
            ans[j] = (ans[j] + r.a[k][j]) % mod;
    printf("%d\n", ans[3]);
}

int main() {
    scanf("%d", &T);
    for (; T; T--) {
    	scanf("%d", &N);
    	if (N > 3)
            ksm(N - 4);
        else printf("1\n");
    }
}

你可能感兴趣的:(矩阵乘法,模版)