poj1149--PIGS (网络最大流,Ford-Fulkerson算法 和 dinic算法)

Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs. 
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold. 
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses. 
An unlimited number of pigs can be placed in every pig-house. 
Write a program that will find the maximum number of pigs that he can sell on that day.

Input

The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N. 
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000. 
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line): 
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

Output

The first and only line of the output should contain the number of sold pigs.

Sample Input

3 3
3 1 10
2 1 2 2
2 1 3 3
1 2 6

Sample Output

7

题目描述:
   迈克在一个养猪场工作,养猪场里有M个猪圈,每个猪圈都上了锁。由于迈克没有钥匙,所以他不能打开任何个猪圈。 要买猪的顾客个接个来到养猪场,每个顾客有些猪圈的销匙而且他们要买定数量的猪。某天,所有要到养猪场买猪的顾客,他们的信息是要提前让迈克知道的。这些信息包括:顾客所拥有的钥匙(详细到有几个猪圈的钥匙、有哪几个猪圈的钥匙、要购买的数量。这样对迈克很有好处,他可以安排销售计划以便卖出的猪的数目最大。
   更详细的销售过程:当每个顾客到来时,他将那些他拥有钥匙的猪圈全部打开:迈克从这些猪属中挑出一些猪卖给他们: 如果迈克愿意,迈克可以重新分配这些被打开的猪圈中的猪:额客离开时,猪圈再次被锁上。注意:猪圈可容纳的猪的数量没有限制。

木题的关键在于如何构造个容量网络。在本题中,  方法如下:
1)  将顾客看作除源点和汇点以外的结点,另设2个节点:源点和汇点;

2)源点和每个猪圈的第一个顾客连边,边的权是开始时猪圈中猪的数目;

3)若源点和某个结点之间有重边,则将权合并(因此源点流出的流量就是所有的猪圈能提供猪的数目)
4)顾客j紧跟在喷客 i之后打开某个猪圈,则边< i , j >的权是正无穷。这是因为,如果顾客 j 紧跟在顾客 i 之后打开某个猪圈,那   么迈克就有可能根据顾客 j 的需求将其他猪圈中的猪调整到该猪圈,这样顾客j就能买到尽可能多的猪:
5)每个顾客和汇点之间连边,边的权是顾客所希望购买的猪的数日(因此汇点的流入最就是每个顾客所购买的猪的数目)。
 

Ford-Fulkerson算法

#include
#include
#include
#include
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
int s,t;                 //源点 汇点
int customer[110][1010]; //节点之间的容量 Cij
int flow[110][1010];     //节点之间的流量 Fij

void init()       //初始化函数,构造网络流
{
    int M,N;      //M 是猪圈的数目 , N是顾客的数目
    int num;       //每个顾客拥有钥匙的数目
    int k;         //第k个猪圈的钥匙
    int house[1010];          //储存每个猪圈中猪的数目
    int last[1010];           //储存每个猪圈前一个顾客的序号
    memset(last,0,sizeof(last));
   // memset(house,0,sizeof(house));
    memset(customer,0,sizeof(customer));
    scanf("%d%d",&M,&N);
    s=0,t=N+1;             //源点 汇点
    for(int i=1;i<=M;i++)
        scanf("%d",&house[i]);
    for(int i=1;i<=N;i++)   //构造网络流
    {
        scanf("%d",&num);    //读入每个顾客钥匙的数目
        //printf("%d\n",num);
        for(int j=0;j0
                if(prev[i]==-2&&(p=customer[v][i]-flow[v][i]))
                {
                    prev[i]=v;
                    queue[qe]=i;
                    qe++;
                    minflow[i]=(minflow[v]

 dinic算法

#include
#include
#include
#include
using namespace std;
const int INF=0x3f3f3f3f;
int S,T,M,N;
int level[210],house[1100],last[1010];
struct Dinic
{
    int c,f;
} edge[210][210];
int dinic_bfs()  //构建层次网络
{
    queueq;
    memset(level,0,sizeof(level));  //初始化顶点的层次为0
    q.push(0);
    level[0]=1;
    int u,v;
    while(!q.empty())
    {
        u=q.front();
        q.pop();
        for(v=0; v<=T; v++)
        {
            if(!level[v]&&edge[u][v].c>edge[u][v].f)//即顶点未被访问,顶点u ,v存在边
            {
                level[v]=level[u]+1;       //给顶点标记层次
                q.push(v);
            }
        }
    }
    return level[T] != 0;      //若返回0表明 汇点不在层次网络中
}
int dinic_dfs(int u,int cp)  //进行增广
{
    int tmp=cp;
    int v,t;
    if(u==T)
        return cp;
    for(v=0; v<=T&&tmp; v++)
    {
        if(level[u]+1==level[v])
        {
            if(edge[u][v].c>edge[u][v].f)
            {
                t=dinic_dfs(v,min(tmp,edge[u][v].c-edge[u][v].f));//向下增广
                edge[u][v].f+=t;
                edge[v][u].f-=t;
                tmp-=t;
            }
        }
    }
    return cp-tmp;
}
int dinic()  //输出最大流
{
    int sum=0,tf=0;
    while(dinic_bfs())
    {
        while(tf=dinic_dfs(0,INF))
            sum+=tf;
    }
    return sum;
}
int main()
{
    scanf("%d%d",&M,&N);
    memset(edge,0,sizeof(edge));
    for(int i=1; i<=M; i++)
        scanf("%d",&house[i]);
    memset(last,0,sizeof(last));
    S=0,T=N+1;
    for(int i=1; i<=N; i++)  //初始化 构造网络流
    {
        int k,num;
        scanf("%d",&num);
        for(int j=1; j<=num; j++)
        {
            scanf("%d",&k);
            if(last[k]==0)
                edge[S][i].c+=house[k];
            else
                edge[last[k]][i].c=INF;
            last[k]=i;
        }
        scanf("%d",&edge[i][T]);
    }
    int ans=dinic();
    printf("%d\n",ans);
}

 

你可能感兴趣的:(网络流)