进阶-第72__elasticsearch高手进阶_基于term vector深入探查数据的情况

课程大纲

 

1、term vector介绍

 

获取document中的某个field内的各个term的统计信息

 

term information: term frequency in the field, term positions, start and end offsets, term payloads

 

term statistics: 设置term_statistics=true; total term frequency, 一个term在所有document中出现的频率; document frequency,有多少document包含这个term

 

field statistics: document count,有多少document包含这个field; sum of document frequency,一个field中所有term的df之和; sum of total term frequency,一个field中的所有term的tf之和

 

GET /twitter/tweet/1/_termvectors

GET /twitter/tweet/1/_termvectors?fields=text

 

term statistics和field statistics并不精准,不会被考虑有的doc可能被删除了

 

我告诉大家,其实很少用,用的时候,一般来说,就是你需要对一些数据做探查的时候。比如说,你想要看到某个term,某个词条,大话西游,这个词条,在多少个document中出现了。或者说某个field,film_desc,电影的说明信息,有多少个doc包含了这个说明信息。

 

2、index-time term vector实验

 

term vector,涉及了很多的term和field相关的统计信息,有两种方式可以采集到这个统计信息

 

(1)index-time,你在mapping里配置一下,然后建立索引的时候,就直接给你生成这些term和field的统计信息了

(2)query-time,你之前没有生成过任何的Term vector信息,然后在查看term vector的时候,直接就可以看到了,会on the fly,现场计算出各种统计信息,然后返回给你

 

这一讲,不会手敲任何命令,直接copy我做好的命令,因为这一讲的重点,不是掌握什么搜索或者聚合的语法,而是说,掌握,如何采集term vector信息,然后如何看懂term vector信息,你能掌握利用term vector进行数据探查

创建mappings

PUT /my_index

{

  "mappings": {

    "my_type": {

      "properties": {

        "text": {

            "type": "text",

            "term_vector": "with_positions_offsets_payloads",

            "store" : true,

            "analyzer" : "fulltext_analyzer"//使用自定义的分词器

         },

         "fullname": {

            "type": "text",

            "analyzer" : "fulltext_analyzer"

        }

      }

    }

  },

  "settings" : {

    "index" : {

      "number_of_shards" : 1,

      "number_of_replicas" : 0

    },

    "analysis": {

      "analyzer": {

        "fulltext_analyzer": {//自定义的分词器

          "type": "custom",

          "tokenizer": "whitespace",

          "filter": [

            "lowercase",

            "type_as_payload"

          ]

        }

      }

    }

  }

}

 

结果:

{

  "acknowledged": true,

  "shards_acknowledged": true

}

 

插入测试数据

PUT /my_index/my_type/1

{

  "fullname" : "Leo Li",

  "text" : "hello test test test "

}

 

PUT /my_index/my_type/2

{

  "fullname" : "Leo Li",

  "text" : "other hello test ..."

}

 

结果:

{

  "_index": "my_index",

  "_type": "my_type",

  "_id": "2",

  "_version": 1,

  "result": "created",

  "_shards": {

    "total": 1,

    "successful": 1,

    "failed": 0

  },

  "created": true

}

 

深入探查测试

GET /my_index/my_type/1/_termvectors

{

  "fields" : ["text"],

  "offsets" : true,

  "payloads" : true,

  "positions" : true,

  "term_statistics" : true,

  "field_statistics" : true

}

结果

{

  "_index": "my_index",

  "_type": "my_type",

  "_id": "1",

  "_version": 1,

  "found": true,

  "took": 10,

  "term_vectors": {

    "text": {

      "field_statistics": {

        "sum_doc_freq": 6, //所有的doc 中的doc_freq加起来

        "doc_count": 2,//意思是:test 这个field 存在多少doc中

        "sum_ttf": 8//所有的doc 中的ttf加起来

      },

      "terms": {

        "hello": {

          "doc_freq": 2,//有两个doc 包含这个term

          "ttf": 2,//hello 这个词在所有doc中出现了几次

          "term_freq": 1,//这个hello在当前这个doc中出现了几次

          "tokens": [//一个hello 在一个field 中可能出现多次,每出现一次就是一个token

            {

              "position": 0,//位于第0个词

              "start_offset": 0,//开始位置

              "end_offset": 5//结束位置,

              "payload": "d29yZA=="//这是一个编码

            }

          ]

        },

        "test": {

          "doc_freq": 2, //有两个doc 包含这个term

          "ttf": 4, //test 这个词在所有doc中出现了4次

          "term_freq": 3, //这个hello在当前这个doc中出现了3次

          "tokens": [[//一个test 在一个field 中可能出现多次,每出现一次就是一个token

            {

              "position": 1,

              "start_offset": 6,

              "end_offset": 10,

              "payload": "d29yZA=="

            },

            {

              "position": 2,

              "start_offset": 11,

              "end_offset": 15,

              "payload": "d29yZA=="

            },

            {

              "position": 3,

              "start_offset": 16,

              "end_offset": 20,

              "payload": "d29yZA=="

            }

          ]

        }

      }

    }

  }

}

 

 

3、query-time term vector实验

 

GET /my_index/my_type/1/_termvectors

{

  "fields" : ["fullname"],

  "offsets" : true,

  "positions" : true,

  "term_statistics" : true,

  "field_statistics" : true

}

 

结果:

{

  "_index": "my_index",

  "_type": "my_type",

  "_id": "1",

  "_version": 1,

  "found": true,

  "took": 13,

  "term_vectors": {

    "fullname": {

      "field_statistics": {

        "sum_doc_freq": 4,

        "doc_count": 2,

        "sum_ttf": 4

      },

      "terms": {

        "leo": {

          "doc_freq": 2,

          "ttf": 2,

          "term_freq": 1,

          "tokens": [

            {

              "position": 0,

              "start_offset": 0,

              "end_offset": 3

            }

          ]

        },

        "li": {

          "doc_freq": 2,

          "ttf": 2,

          "term_freq": 1,

          "tokens": [

            {

              "position": 1,

              "start_offset": 4,

              "end_offset": 6

            }

          ]

        }

      }

    }

  }

}

 

一般来说,如果条件允许,你就用query time的term vector就可以了,你要探查什么数据,现场去探查一下就好了

 

4、手动指定doc的term vector

 

 

GET /my_index/my_type/_termvectors

{

  "doc" : {

    "fullname" : "Leo Li",

    "text" : "hello test test test"

  },

  "fields" : ["text"],

  "offsets" : true,

  "payloads" : true,

  "positions" : true,

  "term_statistics" : true,

  "field_statistics" : true

}

结果:

{

  "_index": "my_index",

  "_type": "my_type",

  "_version": 0,

  "found": true,

  "took": 1,

  "term_vectors": {

    "text": {

      "field_statistics": {

        "sum_doc_freq": 6,

        "doc_count": 2,

        "sum_ttf": 8

      },

      "terms": {

        "hello": {

          "doc_freq": 2,

          "ttf": 2,

          "term_freq": 1,

          "tokens": [

            {

              "position": 0,

              "start_offset": 0,

              "end_offset": 5

            }

          ]

        },

        "test": {

          "doc_freq": 2,

          "ttf": 4,

          "term_freq": 3,

          "tokens": [

            {

              "position": 1,

              "start_offset": 6,

              "end_offset": 10

            },

            {

              "position": 2,

              "start_offset": 11,

              "end_offset": 15

            },

            {

              "position": 3,

              "start_offset": 16,

              "end_offset": 20

            }

          ]

        }

      }

    }

  }

}

 

 

手动指定一个doc,实际上不是要指定doc,而是要指定你想要安插的词条,hello test,那么就可以放在一个field中

 

将这些term分词,然后对每个term,都去计算它在现有的所有doc中的一些统计信息

 

这个挺有用的,可以让你手动指定要探查的term的数据情况,你就可以指定探查“大话西游”这个词条的统计信息

5、手动指定analyzer来生成term vector

GET /my_index/my_type/_termvectors

{

  "doc" : {

    "fullname" : "Leo Li",

    "text" : "hello test test test"

  },

  "fields" : ["text"],

  "offsets" : true,

  "payloads" : true,

  "positions" : true,

  "term_statistics" : true,

  "field_statistics" : true,

  "per_field_analyzer" : {

    "text": "standard"

  }

}

结果:

{

  "_index": "my_index",

  "_type": "my_type",

  "_version": 0,

  "found": true,

  "took": 0,

  "term_vectors": {

    "text": {

      "field_statistics": {

        "sum_doc_freq": 6,

        "doc_count": 2,

        "sum_ttf": 8

      },

      "terms": {

        "hello": {

          "doc_freq": 2,

          "ttf": 2,

          "term_freq": 1,

          "tokens": [

            {

              "position": 0,

              "start_offset": 0,

              "end_offset": 5

            }

          ]

        },

        "test": {

          "doc_freq": 2,

          "ttf": 4,

          "term_freq": 3,

          "tokens": [

            {

              "position": 1,

              "start_offset": 6,

              "end_offset": 10

            },

            {

              "position": 2,

              "start_offset": 11,

              "end_offset": 15

            },

            {

              "position": 3,

              "start_offset": 16,

              "end_offset": 20

            }

          ]

        }

      }

    }

  }

}

 

6、terms filter

GET /my_index/my_type/_termvectors

{

  "doc" : {

    "fullname" : "Leo Li",

    "text" : "hello test test test"

  },

  "fields" : ["text"],

  "offsets" : true,

  "payloads" : true,

  "positions" : true,

  "term_statistics" : true,

  "field_statistics" : true,

  "filter" : {

      "max_num_terms" : 3,

      "min_term_freq" : 1,

      "min_doc_freq" : 1

    }

}

结果:

{

  "_index": "my_index",

  "_type": "my_type",

  "_version": 0,

  "found": true,

  "took": 1,

  "term_vectors": {

    "text": {

      "field_statistics": {

        "sum_doc_freq": 6,

        "doc_count": 2,

        "sum_ttf": 8

      },

      "terms": {

        "hello": {

          "doc_freq": 2,

          "ttf": 2,

          "term_freq": 1,

          "tokens": [

            {

              "position": 0,

              "start_offset": 0,

              "end_offset": 5

            }

          ],

          "score": 1

        },

        "test": {

          "doc_freq": 2,

          "ttf": 4,

          "term_freq": 3,

          "tokens": [

            {

              "position": 1,

              "start_offset": 6,

              "end_offset": 10

            },

            {

              "position": 2,

              "start_offset": 11,

              "end_offset": 15

            },

            {

              "position": 3,

              "start_offset": 16,

              "end_offset": 20

            }

          ],

          "score": 3

        }

      }

    }

  }

}

 

 

这个就是说,根据term统计信息,过滤出你想要看到的term vector统计结果

也挺有用的,比如你探查数据把,可以过滤掉一些出现频率过低的term,就不考虑了

 

7、multi term vector

GET _mtermvectors

{

   "docs": [

      {

         "_index": "my_index",

         "_type": "my_type",

         "_id": "2",

         "term_statistics": true

      },

      {

         "_index": "my_index",

         "_type": "my_type",

         "_id": "1",

         "fields": [

            "text"

         ]

      }

   ]

}

 

GET /my_index/_mtermvectors

{

   "docs": [

      {

         "_type": "test",

         "_id": "2",

         "fields": [

            "text"

         ],

         "term_statistics": true

      },

      {

         "_type": "test",

         "_id": "1"

      }

   ]

}

 

GET /my_index/my_type/_mtermvectors

{

   "docs": [

      {

         "_id": "2",

         "fields": [

            "text"

         ],

         "term_statistics": true

      },

      {

         "_id": "1"

      }

   ]

}

 

GET /_mtermvectors

{

   "docs": [

      {

         "_index": "my_index",

         "_type": "my_type",

         "doc" : {

            "fullname" : "Leo Li",

            "text" : "hello test test test"

         }

      },

      {

         "_index": "my_index",

         "_type": "my_type",

         "doc" : {

           "fullname" : "Leo Li",

           "text" : "other hello test ..."

         }

      }

   ]

}

 

 

 

你可能感兴趣的:(elasticsearch)