- 动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv8】
步入烟尘
YOLO动态蛇形卷积DySnakeConv
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv
- webpack性能优化策略
雅望天堂i
webpack前端node.js
1.代码分割(CodeSplitting)通过代码分割,可以将代码拆分成多个较小的文件,实现按需加载,减少首屏加载时间。使用SplitChunksPlugin将公共代码提取到单独的chunk中,避免重复打包。config.optimization.splitChunks({chunks:'all',cacheGroups:{//第三方组件libs:{name:'chunk-libs',test:/
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 刷题计划day29 动规01背包(一)【01背包】【分割等和子集】【最后一块石头的重量 II】
哈哈哈的懒羊羊
算法java数据结构leetcode动态规划背包问题蓝桥杯
⚡刷题计划day29动规01背包(一)开始,可以点个免费的赞哦~往期可看专栏,关注不迷路,您的支持是我的最大动力~目录背包问题前言01背包二维数组dp[i][j]关于是否放物品:关于二维dp遍历顺序:一维数组dp(滚动数组)关于一维dp遍历顺序:题目一:416.分割等和子集题目二:1049.最后一块石头的重量II背包问题前言对于面试的话,其实掌握01背包和完全背包,就够用了,最多可以再来一个多重背
- 同步&异步日志系统-设计模式
2401_82609762
设计模式
六大原则单⼀职责原则(SingleResponsibilityPrinciple)类的职责应该单⼀,⼀个⽅法只做⼀件事。职责划分清晰了,每次改动到最⼩单位的⽅法或类。使⽤建议:两个完全不⼀样的功能不应该放⼀个类中,⼀个类中应该是⼀组相关性很⾼的函数、数据的封装⽤例:⽹络聊天:⽹络通信&聊天,应该分割成为⽹络通信类&聊天类开闭原则(OpenClosedPrinciple)对扩展开放,对修改封闭使⽤建
- 图像识别技术与应用第三课
哈哈~156
scikit-learn
一、感知机感知机由美国学者FrankRosenblatt在1957年提出,它根据输入x、权重w和偏差b进行输出,输出结果是二分类(0或1),这和输出实数的回归以及输出概率用于多分类的Softmax不同。像与门、与非门、或门都能通过设定合适的权重和偏差实现。w称为权重:控制输入信号的重要性的参数b称为偏置:偏置是调整神经元被激活的容易程度参数感知机的局限性:感知机的局限性就是只能表示由一条直线分割的
- MONAI 1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型
Tina姐
Monai人工智能
MONAI1.4新版本发布,抢先体验MAISI扩散模型以及VISTA交互式分割模型上周,MONAI发布了备受期待的1.4版本,这是时隔一年的重大更新。新版本带来了一系列令人兴奋的新功能和改进,让我们一起来看看:MAISI:这是一个最先进的3D潜在扩散模型(3DLatentDiffusionModel),专为生成高质量的合成CT图像而设计,无论是否带有解剖标注。MAISI在数据增强和创建逼真的医学成
- 洛谷P10424 [蓝桥杯 2024 省 B] 好数
一缕叶
刷题蓝桥杯算法职场和发展
#includeusingnamespacestd;constintN=10000010;inta[8]={0};intt[8]={0};boolisnumber(intn){inti=0;if(n%2==0)returnfalse;intlength=0;while(n){a[i++]=n%10;n/=10;length++;}t[1]=a[1]+a[0],t[2]=a[2]+a[1],t[3]
- TotalSegmentator:一站式医学影像分割工具
柯江同
TotalSegmentator:一站式医学影像分割工具TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目基础介绍及编程语言TotalSegmentator是一个强
- ️ 总览:TotalSegmentator - 医学影像分割的革新者
金斐茉
️总览:TotalSegmentator-医学影像分割的革新者TotalSegmentatorToolforrobustsegmentationof>100importantanatomicalstructuresinCTimages项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator在医学图像处理领域中,精确且高效的自动分割工具对于研究和
- 探索TotalSegmentator:一款强大的全场景图像分割工具
计蕴斯Lowell
探索TotalSegmentator:一款强大的全场景图像分割工具项目地址:https://gitcode.com/gh_mirrors/to/TotalSegmentator项目简介是一个开源的、基于深度学习的全场景图像分割框架。它由开发者Wasserth创建,旨在为医学影像分析、自动驾驶、遥感图像处理等多个领域提供高效且准确的像素级分类能力。该项目的亮点在于其模型的通用性和易用性,能够处理多种
- 2.19 图像技术识别与应用
不要不开心了
java-rabbitmqsentinelhttpxnumpydash
本节课介绍了多层感知机(MLP)及其在图像识别技术中的应用。以下是主要内容总结:1.感知机:-由FrankRosenblatt于1957年提出。-输入为x,权重为w,偏置为b,输出为二分类(0或1)。-可用于实现简单逻辑电路(如与门、与非门、或门)。-局限性:只能表示由一条直线分割的空间,无法处理线性不可分问题(如异或门)。2.多层感知机(MLP):-通过引入隐藏层和激活函数来解决感知机的局限性。
- leetcode_132. 分割回文串 II
二次元憨批
算法leetcodec++
给定一个字符串s,将s分割成一些子串,使每个子串都是回文串。返回符合要求的最少分割次数。示例:输入:“aab”输出:1解释:进行一次分割就可将s分割成[“aa”,“b”]这样两个回文子串。解析:本题与上一题不同,要求返回最少分割次数。看似更加简单,实则相反。如果用上一题的基础来看,对上一题的结果即所有的分割可能进行统计即可获得最少分割次数。但是毫无疑问的超时了。本题仅要求返回次数,因此不需要进行回
- hive—常用的函数整理
风子~
hivehadoop数据仓库
1、size(split(...))函数用于计算分割后字符串数组的长度1)实例:由客户编号列表计算客户编号个数--数据准备withtmp_test01as(select'tag074445270'tag_id,'202501'busi_mon,'012399931003,012399931000'index_valunionallselect'tag074445271'tag_id,'202501
- 每日一题010-堆-洛谷p2085最小函数值
YQ_ZJH
每日一题算法java开发语言数据结构蓝桥杯c++
P2085最小函数值题目描述有nnn个函数,分别为F1,F2,…,FnF_1,F_2,\dots,F_nF1,F2,…,Fn。定义Fi(x)=Aix2+Bix+Ci(x∈N∗)F_i(x)=A_ix^2+B_ix+C_i(x\in\mathbbN*)Fi(x)=Aix2+Bix+Ci(x∈N∗)。给定这些AiA_iAi、BiB_iBi和CiC_iCi,请求出所有函数的所有函数值中最小的mmm个(如
- 机器学习:决策树
小源学AI
人工智能机器学习决策树人工智能
1.初步概念决策树是一种基于分裂特征的机器学习方法,用于分类和回归任务。它通过将数据按特征值进行分割,最终做出预测。与线性模型不同,决策树能够自动识别重要的特征,并根据数据情况生成复杂的决策规则。2.决策树的核心思想决策树的核心思想在于选择一个特征作为分裂条件,将当前的数据划分为两个子节点,并重复这个过程直到达到停止条件。分裂条件的选择通常基于信息增益(香农信息量)或基尼不等式,以确保每次分裂都能
- 机器学习:支持向量机
小源学AI
人工智能支持向量机机器学习算法
基本概念1.什么是支持向量机支持向量机是一种二分类模型,在机器学习、计算机视觉、数据挖掘中广泛应用,主要用于解决数据分类问题,它的目的是寻找一个超平面对样本进行分割,分割的原则是间隔最大化(也就是数据集的边缘点到分界点的距离d最大)最终转化成一个凸二次规划问题来求解。通常的SVM用于二元分类问题,对于多元分类问题可将其分解为多个二元分类问题,在进行分类。2.最优分类边界什么才是最优分类边界?什么条
- EMC Symmetrix V-Max:革命者?集大成者?
weixin_34067980
前端后端运维ViewUI
横向,还是纵向?两个月前,EMC公司存储部门总裁唐纳特利(DavidA.Donatelli)访华的时候,笔者问了这样一个问题:中高端存储市场上,已经出现了以IBMXIV和3PARInServT系列为代表的横向扩展(scaleout)系统,而SymmetrixDMX-4仍属于纵向扩展(scale-up)系统,(不可分割的)单一系统能支持的驱动器数量多达2400个。传说中的DMX-5,还会向这个方向发
- VTK知识学习(32)-图像运算
无所谓จุ๊บ
VTK学习VTK
1、数学运算vklmageMathematics提供了基本的一元和二元数学操作。根据不同的操作,需要一个或者两个输入图像。二元数学操作要求两个输入图像具有相同的像素数据类型和颜色组分。当两个图像大小不同时,输出图像的范围为两个输入图像范围的并集,并且原点和像素间隔与第一个输入图像保持一致。privatevoidTestMathematics(){//绘制一个暗红色矩形vtkImageCanvasS
- 利用 OpenCV 进行棋盘检测与透视变换
萧鼎
python基础到进阶教程opencv人工智能计算机视觉
利用OpenCV进行棋盘检测与透视变换1.引言在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于摄像机标定、文档扫描、增强现实(AR)等场景。本篇文章将详细介绍如何使用OpenCV进行棋盘检测,并通过透视变换将棋盘区域转换为一个标准的矩形图像。我们将基于一段Python代码进行分析,代码的主要任务包括:读取图像并进行预处理(灰度转换、自适应直方图均衡化、去噪)检测边缘并提取棋盘区域计
- 蓝桥杯备考:贪心算法之纪念品分组
无敌大饺子 1
贪心算法算法
P1094[NOIP2007普及组]纪念品分组-洛谷这道题我们的贪心策略就是每次找出最大的和最小的,如果他们加起来不超过我们给的值,就分成一组,如果超过了,就把大的单独成一组,小的待定#include#includetypedeflonglongLL;usingnamespacestd;LLw,n;constintN=3e4+10;LLa[N];intmain(){cin>>w>>n;for(in
- K-means聚类:解锁数据隐藏结构的钥匙
小村学长毕业设计
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- 地平线x5下运行yolo11s-seg模型
zgrobot
机器人yolo11实例分割地平线x5
经过地瓜机器人工作人员(感谢吴超同学)的及时技术支持,整体比较顺利的跑起来了yolo11s-seg分割模型。将一些经验记录下来:首先下载使用docker镜像:https://developer.d-robotics.cc/forumDetail/228559182180396619https://developer.d-robotics.cc/forumDetail/251934919646096
- 【YOLOv11改进- 主干网络】YOLOv11+CSWinTransformer: 交叉窗口注意力Transformer助力YOLOv11有效涨点;
算法conv_er
YOLOv11目标检测改进YOLO目标跟踪人工智能目标检测深度学习transformer计算机视觉
YOLOV11目标检测改进实例与创新改进专栏专栏地址:YOLOv11目标检测改进专栏,包括backbone、neck、loss、分配策略、组合改进、原创改进等本文介绍发paper,毕业皆可使用。本文给大家带来的改进内容是在YOLOv11中更换主干网络为CSWinTransformer,助力YOLOv11有效涨点,通过创新性地开发了十字形窗口自注意力机制。该机制通过将输入特征分割为等宽条纹,在水平与
- 深度学习下的图像分割
人工智能大讲堂
深度学习人工智能
在之前写的文章[图像分割演进之路]中,讲述了图像分割的发展历程,从传统图像分割算法到人工智能,分割算法百花齐放,但最终的佼佼者当属人工智能,但即使是人工智能领域,图像分割也五花八门,今天就让我们看几种基于学习的图像分割方法。基于学习的图像分割算法主要依赖于深度神经网络,经典的深度神经网络分为如下几种:2.1卷积神经网络CNN:卷积神经网络是图像处理领域应用最为广泛的网络,其权值共享,局部连接等特性
- redis结合lua脚本解决多线程并发安全问题
练川
redisluaredis
文章目录前言原子性单线程模型总结前言我们知道,多线程并发访问共享数据的时候,可能会造成并发安全问题,这是由于并发时多个线程相互穿插造成的问题;可以通过加锁,使得多个线程串行执行解决。当访问的是redis中的共享数据时,除了可以通过加锁解决,还可以使用lua脚本解决。本文针对redis结合lua脚本解决多线程并发安全问题,记录下个人的理解。原子性首先何为原子性?原子性是指操作不可分割,要么全部执行成
- BGP RR路由反射器
VVVVWeiYee
路由技术网络运维信息与通信
解决问题由于BGP水平分割的原因,即从IBGP邻居学到的路由不会通告给其他IBGP邻居,这就要求IGP内的设备都需要两两设备都必须运行并建立IBGP邻居,这不仅不利于网络的部署还增加了配置的复杂度,对于网络管理和设备来说都是一件坏事,为优化设备交流信息量,因此有了联邦和RR,但两者相较而言RR在简化信息的同时还简化了配置,比起联邦灵活性更高工作原理与BGPRR反射器相关的路径属性有Cluster-
- open3d python 分割多个平面
黄晓魚
halcon3dPCL点云处理深度神经网络点云处理PCL库Open3D库Point++模型使用平面算法open3dpython
测试效果废话在Open3D中,detect_planar_patches方法用于从点云数据中检测平面区域(或称为平面补丁)。这个方法通过分析点云中各点之间的法线向量和方向性来识别具有相似法线向量的点群,从而识别出潜在的平面区域。下面是对你给出的代码行中各个参数的解释:normal_variance_threshold_deg:法线向量方差阈值(以度为单位)。这个参数设定了允许的点云中法线向量方向变
- Open3D(C++) 可视化绘制平面模型
后端架构魔术师
c++平面开发语言编程
Open3D(C++)可视化绘制平面模型Open3D是一个现代化的3D图像处理引擎,它包含很多常用的3D操作,如点云分割、重构、配准等。其中,在可视化方面Open3D也提供了一系列方便易用的函数和接口。在本篇文章中,我们将介绍如何使用Open3D绘制一个简单的平面模型并进行可视化展示。下面是完整的源代码:#include#includeintmain(){//创建平面顶点std::vectorve
- 【二分搜索 C/C++】洛谷P1024 一元三次方程求解
仟濹
算法学习笔记c语言c++算法
2025-02-13-第52篇作者(Author):郑龙浩/仟濹(CSND)【二分搜索】P1024一元三次方程求解题目描述有形如:ax3+bx2+cx+d=0ax^3+bx^2+cx+d=0ax3+bx2+cx+d=0这样的一个一元三次方程。给出该方程中各项的系数(a,b,c,da,b,c,da,b,c,d均为实数),并约定该方程存在三个不同实根(根的范围在−100-100−100至1001001
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST