- 基于Pytorch深度学习——Softmax回归
EchoToMe
深度学习pytorch回归python
本文章来源于对李沐动手深度学习代码以及原理的理解,并且由于李沐老师的代码能力很强,以及视频中讲解代码的部分较少,所以这里将代码进行尽量逐行详细解释并且由于pytorch的语法有些小伙伴可能并不熟悉,所以我们会采用逐行解释+小实验的方式来给大家解释代码大家都知道二分类问题我们在机器学习里面使用到的是逻辑回归这个算法,但是针对于多分类问题,我们常用的是Softmax技术,大家不要被这个名字给迷惑了,s
- Python 在深度学习中的应用
2501_90435375
人工智能python深度学习开发语言
深度学习是机器学习的一个分支,它通过构建和训练深层神经网络来实现对数据的学习和理解。Python作为一种简洁、易读、功能强大的编程语言,在深度学习领域得到了广泛的应用。本文将详细介绍Python在深度学习中的应用,包括深度学习的基础概念、Python深度学习库和框架、实际案例。二、深度学习的基础概念1.神经网络神经网络是深度学习的基础,它由多个神经元组成,每个神经元接收输入信号,进行加权求和,并通
- llama.cpp 安装与量化(mac电脑)
初七i
llamamacosllama.cpp量化ai
llama.cpp安装与量化(mac电脑)1.创建并切换至虚拟环境2.安装llama.cpp3.安装依赖4.转换模型5.创建build目录6.生成构建文件7.编译项目8.运行量化命令9.测试量化后的模型1.创建并切换至虚拟环境condacreate-nllamacpppython=3.10-ycondaactivatellamacpp2.安装llama.cppgitclonehttps://git
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 第6篇:Transformer架构详解(下):多头注意力机制与位置编码
Gemini技术窝
transformer深度学习人工智能自然语言处理机器学习chatgptnlp
Transformer模型自提出以来,已经在自然语言处理(NLP)领域取得了巨大的成功。其核心创新包括多头注意力机制和位置编码,这些技术使得Transformer能够高效处理长序列数据。本文将详细介绍多头注意力机制和位置编码的原理、作用及其实现,并通过Python代码示例和应用场景讲解,帮助零基础读者全面理解这些关键技术。我们还将使用幽默的比喻,使这些复杂的概念更加易懂。文章目录多头注意力机制基本
- 关于FBX模型导入Unity后,在Play场景里想要选中但报错:“NullReferenceException: Object reference not set to an insta”的解决办法。
宝宝嘟嘟打雷辣
unity游戏引擎
FBX导入Unity后,本想要测试通过做一个BIM模型数字孪生场景,实现Play场景下,选择构件能展示构件属性信息。代码如下:usingSystem.Collections;usingSystem.Collections.Generic;usingUnityEngine;publicclassDemo1:MonoBehaviour{publicfloatsmooth=3f;Transformcur
- 了解rust以及cargo
RustKK
rust开发语言后端
Rust是一种系统编程语言,设计用来提供高性能和内存安全。它的主要目标是通过所有权(ownership)模型和借用检查(borrowchecking)来防止空指针和数据竞争等常见的编程错误Cargo是Rust的包管理器和构建系统。它的作用是简化Rust项目的构建、依赖管理、打包和发布。Cargo和Rust紧密结合,为开发者提供了一个高效的开发环境。Cargo的作用依赖管理:Cargo可以管理项目的
- 怎么定义世界模型,Sora/Genie/JEPA 谁是世界模型呢?(1)
周博洋K
分布式人工智能深度学习自然语言处理机器学习
说这个问题之前先看一下什么是世界模型,它的定义是什么?首先世界模型的起源是咋回事呢?其实世界模型在ML领域不是什么新概念,远远早于Transfomer这些东西被提出来,因为它最早是强化学习RL领域的,在20世纪90年代由JuergenSchmiduber实验室给提出来的。2018年被Ha和Schmiduber发表了用RNN来做世界模型的论文,相当于给他重新做了一次定义。然后就是最近跟着Sora,G
- 考研复习之记忆方法
herosunly
考名校研究生经验分享考研
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 时间序列预测之移动平均法预测模型
皖山文武
数据挖掘商务智能数据挖掘python时间序列移动平均
时间序列预测之移动平均法预测模型1.时间序列预测法概述1.1时间序列的基本特征1.2时间序列的分类1.3时间序列的影响因素分析2移动平均数预测模型2.1一次移动平均法2.2二次移动平均法2.3基于Python的移动平均法预测模型1.时间序列预测法概述时间序列,也称为时间数列、历史复数或动态数列。它是将某种统计的指标数值按照时间先后顺序排列所形成的数列。根据时间序列所反映出来的发展过程、方向和趋势,
- OPPO机器学习算法岗(AI智能体)内推
飞300
人工智能业界资讯
专注于以端设备为中心的AI智能体研究与应用,研究方向包括但不限于智能体与多智能体框架、大模型推理与规划、大模型工具使用等。1、负责大模型驱动的AI智能体框架的实现、评估与优化,并参与构建产品原型;2、设计微调方案、适配算法和调优工程方案,结合智能体应用,实现最佳效果与性能;3、跟踪与研究AI智能体相关前沿技术,并针对大模型推理与规划、工具使用、结构化输出等提出创新性方案。推荐码:X3448036
- 什么是JEPA(联合嵌入预测架构),它与现有技术有何不同?
百态老人
架构
联合嵌入预测架构(JEPA)是一种新的预测建模方法,旨在通过在表示空间中进行预测,而不是直接生成详细的像素级输出,从而提高模型的效率和准确性。JEPA的核心思想是利用输入数据(如图像或视频)的抽象表示来捕捉重要的信息,并在此基础上进行预测,而不是试图重建输入数据的每一个细节。与传统的生成式模型不同,JEPA不专注于在像素空间中重建输入数据,而是通过编码器将输入和目标数据抽象为表示,并使用潜在变量来
- 【时间序列聚类】从数据中发现隐藏的模式
T-I-M
机器学习人工智能时间序列
在大数据时代,时间序列数据无处不在。无论是股票市场的价格波动、天气的变化趋势,还是用户的点击行为,这些数据都随着时间推移而产生。然而,面对海量的时间序列数据,我们如何从中提取有价值的信息?答案之一就是时间序列聚类。本文将以通俗易懂的方式,带你了解时间序列聚类的基本概念、应用场景以及实现思路,并希望能为你提供一些启发。什么是时间序列聚类?简单来说,时间序列聚类是一种将相似的时间序列归为一类的技术。它
- Deepseek结合AnythingLLM搭建个人本地智能知识库
曲幽
AI计算机deepseekai大模型ollamaanythingllm本地知识库
之前通过Ollama搭建了本地Deepseek大模型对话机制,但知识点仅限于Deepseek内部的数据,且目前数据截止时间为2024年7月,如果我们询问一些专业性比较强的内容,则Deepseek也显得无能为力,这就需要再给这个大脑外接一些文档数据了,通过AnythingLLM来Embedding外部文档。更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程1下载安装AnythingLLM有
- 《物联网安全特辑:从智能设备到工业控制系统的攻防博弈》
程序员没睡醒
网络安全物联网安全物联网安全固件分析工控系统
设备分层威胁模型感知层传感器数据篡改网络层无线协议劫持平台层云API滥用应用层移动APP逆向设备控制权夺取0x01固件逆向:解剖设备的灵魂固件提取三板斧方法1:OTA升级包捕获#使用Wireshark过滤HTTP流量tshark-ieth0-Y"http.request.uricontainsfirmware"-wfirmware.pcap目的:截取设备升级时的固件传输流量方法2:Flash芯片硬
- 【花雕动手做】基于ESP32S3和通义千问大模型AI语音聊天机器人
驴友花雕
人工智能机器人嵌入式硬件单片机c++基于ESP32S3通义千问AI语音聊天机器人
开源项目1、核心功能:该项目利用ESP32S3开发板,结合通义千问大模型,实现了一个AI语音聊天机器人。用户可以通过语音与机器人进行交互,机器人能够理解用户的语音指令并给出相应的语音回答。2、技术架构:(1)语音识别:使用语音转文字大模型,将用户的语音输入转换为文本信息。(2)文本理解:将转换后的文本发送到通义千问大模型进行处理,模型会根据文本内容生成相应的回答。(3)语音合成:将模型生成的文本答
- http与https的区别
weixin_30467087
操作系统网络
HTTPhttp是一个应用层协议,由请求和响应构成,是一个标准的客户端服务器模型。http通常承载于TCP之上,有时也承载于TLS或SSL协议层之上,这就是常说的httphttp无状态协议,同一个客户的这次请求和上次请求没有对应关系。HTTP协议的主要特点可概括如下:1.支持客户/服务器模式。2.简单快速:客户向服务器请求服务时,只需传送请求方法和路径。请求方法常用的有GET、HEAD、POST。
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- 算力安全创新驱动未来趋势endofsentence
智能计算研究中心
其他
内容概要算力安全与技术创新正在重塑全球算力生态,其核心驱动力来自异构计算、边缘计算及量子计算等前沿技术的深度融合。当前算力架构正经历从集中式向分布式演进,通过异构加速芯片、动态资源调度算法及绿色能效优化,显著提升算力基础设施的可扩展性与可靠性。例如,异构计算通过CPU、GPU、FPGA的协同加速,使复杂模型训练效率提升40%以上。关键数据:根据IDC预测,到2025年全球智能算力需求将增长30倍,
- H800实战应用深度解析endofsentence
智能计算研究中心
其他
内容概要H800作为新一代计算架构的核心组件,其设计理念聚焦于高性能计算与人工智能场景的深度融合。通过模块化异构计算架构,H800实现了计算密度与能效比的突破性提升。下表展示了H800在不同场景下的性能表现对比:场景类型训练速度提升推理延迟降低能效比提升自然语言处理35%22%40%计算机视觉28%18%33%推荐系统41%29%37%资深系统架构师指出:"H800的异构计算架构在模型并行处理方面
- DeepSeek高效AI创作成本革新endofsentence
智能计算研究中心
其他
内容概要DeepSeek作为新一代智能创作平台,其核心技术突破体现在混合专家架构(MoE)与670亿参数的深度融合。该系统通过多任务联合训练框架,在自然语言理解、代码生成和跨模态处理方面展现出显著优势。其混合专家架构采用动态路由机制,实现参数利用率提升40%以上,在保持模型容量的同时将推理成本降低68%。在代码生成任务中,DeepSeekCoder在HumanEval基准测试中达到83.1%的准确
- 【电机控制器】ESP32C3——持续更新
Kisorge
单片机
【电机控制器】ESP32C3——持续更新文章目录@[TOC](文章目录)前言一、ADC、PWM、UART二、语言模型四、参考资料总结前言使用工具:提示:以下是本篇文章正文内容,下面案例可供参考一、ADC、PWM、UART【电机控制器】ESP32-C3芯片——PWM、ADC二、语言模型【电机控制器】ESP32-C3语言模型——豆包【电机控制器】ESP32-C3语言模型——DeepSeek【电机控制器
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- PythonWeb——Django框架
Error_exception_worn
Python基础数据库Pythondjango
框架介绍1.什么是框架?框架就是程序的骨架,主体结构,也是个半成品。2.框架的优缺点可重用、成熟,稳健、易扩展、易维护3.Python中常见的框架大包大揽Django被官方称之为完美主义者的Web框架。力求精简web.py和Tornado新生代微框架Flask和Bottle4.Web框架中的一些概念MVC(模型-视图-控制器)和MVT(模型-视图-模板)Django框架介绍Django是一个高级的
- 1.动手学习深度学习课程安排及深度学习数学基础
Unknown To Known
动手学习深度学习深度学习人工智能
视频资源B站:动手学习深度学习——李沐目录目标内容将学到什么1.N维数组样例2.访问2维数组元素3.数据操作4.线性代数5.矩阵计算6.自动求导目标介绍深度学习景点和最新模型LeNetAlexNetVGGResNetLSTMBERT…机器学习基础损失函数,目标函数,过拟合,优化实践使用pytorch实现介绍的知识点在真实数据上体验算法效果内容深度学习基础——线性神经网络,多层感知机卷积神经网络——
- DeepSeek大语言模型下几个常用术语
曲幽
AI计算机语言模型人工智能自然语言处理deepseekollamaai
昨天刷B站看到复旦赵斌老师说的一句话“科幻电影里在人脑中植入芯片或许在当下无法实现,但当下可以借助AI人工智能实现人类第二脑”(大概是这个意思)更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程基本概念AI人工智能NLP自然语言处理LLM大语言模型HuggingFace一个提供了丰富的预训练模型和工具库的平台网站Ollama开源的本地大语言模型运行框架,用来在本地部署调用大语言模型,如D
- Poe AI推出Previews预览功能!对标Claude Artifacts!
AI信息Gap
人工智能aigptOpenAIchatgpt
Anthropic在发布最新模型Claude3.5Sonnet时,同时官宣了一个针对ClaudeAI重要的更新,那就是Artifacts。新功能Artifacts允许Claude用户在与聊天机器人的对话之外,通过一个专门的窗口分享、编辑和构建重要的独立内容。这些内容通常是超过15行的文本、代码片段、HTML网页、SVG图像、图表和交互式React组件等。用户可以在专用窗口中查看、复制和编辑这些内容
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- ROS实践(三)xacro文件基础(urdf扩展)
简约少年
ROS机器人xacro
目录一、定义二、xacro文件常见组成部分1.命名空间声明2.定义宏3.调用宏4.定义参数5.条件语句6.转换xacro文件为urdf7.gazebo标签三、代码示例1.gazebo标签使用(仿真参数配置)2.引用仿真配置并定义机器人模型(结构)四、加载仿真模型(含传感器的机器人)1.编写launch文件。2.实际效果。一、定义通俗来说,xacro就是urdf文件的一种“进阶版”,它是用来简化和优
- 大模型全军覆没,中科院自动化所推出多图数学推理新基准 | CVPR 2025
量子位
关注前沿科技量子位挑战多图数学推理新基准,大模型直接全军覆没?!事情是这样的。近日,中国科学院自动化研究所推出多图数学推理全新基准MV-MATH(该工作已被CVPR2025录用),这是一个精心策划的多图数学推理数据集,旨在全面评估MLLM(多模态大语言模型)在多视觉场景中的数学推理能力。结果评估下来发现,GPT-4o仅得分32.1,类o1模型QvQ得分29.3,所有模型均不及格。具体咋回事,下面接
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟