- QML音视频实时通信
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5QT教程c++音视频
QML音视频实时通信使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QML与音视频实时通信概述1.1QML音视频技术发展背景1.1.1QML音视频技
- QML Web云应用开发
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5QT教程c++
QMLWeb云应用开发使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QML与Web技术概述1.1QML与Web技术简介1.1.1QML与Web技术
- QT硬件接口设计
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5QT教程c++
QT硬件接口设计使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QT硬件接口设计概述1.1QT硬件接口设计简介1.1.1QT硬件接口设计简介QT硬件
- 【QT教程】QML音视频效果实现 QT音视频
QT性能优化QT原理源码QT界面美化
qtqt6.3qt5c++QT教程
QML音视频效果实现使用AI技术辅助生成QT界面美化视频课程QT性能优化视频课程QT原理与源码分析视频课程QTQMLC++扩展开发视频课程免费QT视频课程您可以看免费1000+个QT技术视频免费QT视频课程QT统计图和QT数据可视化视频免费看免费QT视频课程QT性能优化视频免费看免费QT视频课程QT界面美化视频免费看1QML与音视频效果1.1QML简介1.1.1QML简介QML简介QML简介QML
- 【MySQL】深入解析“Data too long”错误:原因、解决方案与优化策略
master_chenchengg
sql数据库mysql数据库
【MySQL】深入解析“Datatoolong”错误:原因、解决方案与优化策略一、引言二、技术概述错误定义核心特性与优势三、技术细节原理分析难点四、实战应用应用场景问题与解决方案五、优化与改进潜在问题改进建议六、常见问题问题列举解决方案七、总结与展望一、引言MySQL作为世界上最受欢迎的开源关系型数据库管理系统之一,其稳定性和灵活性使其在Web应用、数据仓库和其他需要高性能数据存储的场景中占据主导
- Python 潮流周刊#77:Python 依赖管理就像垃圾场火灾?(摘要)
python
本周刊由Python猫出品,精心筛选国内外的250+信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频、热门话题等内容。愿景:帮助所有读者精进Python技术,并增长职业和副业的收入。分享了12篇文章,12个开源项目,2则热门讨论,全文2200字。以下是本期摘要:文章&教程①Python依赖管理一种垃圾场火灾②Python的膨胀:精细的项目间依赖关系分析③分享我的Django项
- MediaCrawler 小红书爬虫源码分析
前言MediaCrawler是最近冲上Github热搜的开源多社交平台爬虫。虽然现在已删库,但还好我眼疾手快,有幸还Fork了一份,乘着周末,简单分析了下小红书平台的相关代码。爬虫难点一般写爬虫,都需要面对以下几个问题如果app/网页需要登录,如何获取登录态(cookie/jwt)大部分app/网页都会对请求参数进行sign,如果有,如何获取sign逻辑绕过其它遇到的反爬措施我将带着这三个问题,阅
- 深入理解 ECMAScript 2024 新特性:正则表达式 /v 标志
李游Leo
前端ECMAScriptecmascript正则表达式前端
ECMAScript2024(ES15)标准引入了新的正则表达式标志/v,这一新增功能不仅优化了多行匹配的处理,还增加了对特殊字符匹配的支持。这一变革对于需要处理复杂文本数据的应用场景尤为重要,比如日志分析、代码审核等。接下来,本文将深入探讨/v标志的实际应用价值,并通过多个编程案例来展示其强大的实际应用能力。/v标志的技术背景与应用正则表达式作为开发者的有力工具,经常被用于字符串搜索、验证和替换
- C# 提升性能效率
东城十三
C#c#开发语言
以下是一些提升C#程序运行效率的完整解决方法,包括代码优化、内存管理、并行和异步处理、编译和运行时优化、以及性能分析和监控。1.优化代码逻辑避免不必要的计算和方法调用//避免重复计算doubleresult=Math.Sqrt(2);//计算一次for(inti=0;i();dictionary[1]="one";dictionary[2]="two";//查找比在列表中更快if(dictiona
- 快手不发作品ip地址会变吗
hgdlip
快手iptcp/ip快手
在数字时代,我们每个人的在线行为都留下了独特的痕迹。这些痕迹不仅仅是我们的言论或行为,还包括我们的IP地址——一个在网络世界中标识我们位置的数字标签。近年来,随着短视频平台的兴起,如快手这样的应用已经深入人们的日常生活。那么,当我们在快手这样的平台上不发布作品时,我们的IP地址是否会发生变化呢?本文将探讨这一问题,并深入分析IP地址在数字时代的重要性和影响。首先,我们需要了解IP地址的基本概念。I
- python如何读取csv文件?
gaogsf
Pythonpython开发语言
CSV(CommaSeparatedValues)文件是一种常见的文件格式,它将数据以逗号分隔的形式存储,通常用于存储表格数据。在Python中,我们可以使用多种方法来读取CSV文件,本文将从多个角度分析Python如何读取CSV文件。一、Python内置的csv库Python内置了csv库,可以使用该库中的reader对象来读取CSV文件。下面是一个示例代码:importcsvwithopen(
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (正在更新中~)别人能写出来的,你也能行!多学习别人的思路,形成自己的思路,高薪工作奔你而来!
小白的大数据历程
Spark源码解析开发语言spark大数据分布式scala
后一篇链接在这接上一章请先看解读序列化抽象类第一部分(这是一个链接)目录接上一章请先看解读序列化抽象类第一部分2.Java序列化实现类JavaSerializer(1)JavaSerializationStream类代码实际例子1:序列化(2)JavaDeserializationStream代码实际例子2:反序列化Spark源码下类图在学习过程中,抓住主要问题,请思考问题为什么Kryo序列化更加
- Spark 源码分析(一) SparkRpc中序列化与反序列化Serializer的抽象类解读 (java序列化部分完结,正在更新RpcEnv部分~)
小白的大数据历程
Spark源码解析sparkjavapython
目录(3)JavaSerializerInstance定义了一个Java序列化实例(1)构造方法参数(2)方法1:serializeStream(3)方法2:deserializeStreamdefaultClassLoader(4)方法3:deserializeStreamloader(5)方法4:serialize(6)方法5:deserializeloader(7)方法6:deseriali
- R语言的并发编程
技术的探险家
包罗万象golang开发语言后端
R语言的并发编程引言在现代计算中,如何有效地利用计算资源进行数据处理和分析已成为一个重要的研究方向。尤其在大数据时代,数据量的急剧增加让单线程处理方式显得力不从心。为了解决这一问题,各种编程语言都开展了并发编程的研究和应用。R语言作为一种广泛应用于统计分析和数据科学的语言,也为并发编程提供了强大的支持。本文将介绍R语言的并发编程,包括其基本概念、常用包、应用示例以及实用技巧。一、并发编程基础并发编
- PCL 点云随机渲染颜色
MelaCandy
PCL点云算法与实战案例3d算法计算机视觉人工智能c++
目录一、概述1.1原理1.2实现步骤1.3应用场景二、代码实现2.1关键函数2.2完整代码三、实现效果PCL点云算法汇总及实战案例汇总的目录地址链接:PCL点云算法与项目实战案例汇总(长期更新)一、概述本文将介绍如何使用PCL库为点云中的每个点随机渲染颜色,并在PCL的可视化窗口中显示。这种方法适用于需要对点云中的不同点进行颜色区分的场景,可以帮助更直观地观察和分析点云数据。1.1原理在点云处理中
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- 一个非常好用的图片切割工具(c# winform开发)
源之缘-OFD解决方案之道
c#winform
本人业余时间开发了一个图片切割工具,非常好用,也很灵活!特别对大型图片切割,更能体现出该软件的优势!开发工具为winform功能说明可以设定切割的高度和宽度。切割线可以上下拖动,可以增加一个切割区域,可设定某个区域不参与切割。主要技术点分析切割区域确定每个切割区域是一个长方形。用一个结构标识该属性。1classSpliteMoveIndex2{3publicenumEN_DIR4{5NON,6HO
- 数据分析思维
幽兰的天空
combobox数据仓库大数据
了解数据分析的本质是什么在数据中寻找解决问题的方法。使用大量的数据、统计分析、定量、定性分析和预测模型及基于事实的管理来推动决策过程和实现价值增生。数据分析思维1.一个思维模型:目标导向分析法2.做好分析准备:探索性数据分析数据分析的四个层级1.描述性分析2.诊断性分析3.预测性分析4.决策性分析
- Python数据分析常见面试题和答案01-10
飞翔还哈哈6
Python数据分析pythonpandas数据分析
以下是一些Python数据分析常见面试题和答案:1.Python中的list和tuple的区别是什么?答:List是可变的,而元组(tuple)是不可变的。因此,使用list来存储需要频繁修改的数据,而使用元组来存储不能更改的数据项。2.解释NumPy中的数组?为什么numpy在数据分析中很重要?答:NumPy是Python中提供高性能科学计算和数据分析的包。NumPy数组是一种类似于列表的数据结
- 随机应变:网站的可扩展性架构
迈克雷(MichaelRay)
架构之美
国内某大型互联网企业经常因为对同行的产品进行微创新,然后推出自己的产品而遭人诟病,不讨论这种做法是否合适,我们分析这些产品,发现大多数都比原创产品有更好的用户体验。这些产品常常后来居上,更速度地推出新功能,吸引用户注意,进而占据市场。微信从发布到拥有1亿用户,仅仅用了一年的时间。而据说摇一摇这个功能是两个实习生用一个星期就开发完成上线的。使用TOP(TaobaoOpenAPI),一个技术熟练的淘宝
- MySQL—多表查询—自连接
岁岁岁平安
MySQL自学mysql数据库DataGripMySQL多表查询自连接
一、引言自连接,顾名思义就是自己连接自己。自连接的语法结构:表A别名Ajoin表A别名BON条件...;注意:1、这种语法有一个关键字:join2、自连接查询可以是内连接的语法,可以是外连接的语法(当然包括左外连接和右外连接)接下来去工具DataGrip通过两个需求去演示一下自连接查询的语法。二、实操(0)两张表的结构以及数据展示员工表emp部门表dept(1)查询员工及其所属领导的名字1、分析在
- 使用Python访问和操作Llama的方法
起风了~~~。
pythonllama人工智能Python
使用Python访问和操作Llama的方法Llama是一个流行的Python库,用于处理和操作数据集。它提供了丰富的功能和工具,使我们能够轻松地对数据进行处理、转换和分析。本文将介绍如何使用Python来访问和使用Llama库,并提供相应的示例代码。安装Llama库首先,我们需要安装Llama库。可以使用pip命令在Python环境中安装Llama。打开终端或命令提示符,并运行以下命令:pipin
- 【数据分析岗】关于数据分析岗面试python的金典问题+解答,包含数据读取、数据清洗、数据分析、机器学习等内容
摇光~
数据分析面试python
大家好,我是摇光~,用大白话讲解所有你难懂的知识点最近和几个大佬交流了,说了很多关于现在职场面试等问题,然后也找他们问了问他们基本面试的话都会提什么问题。所以我收集了很多关于python的面试题,希望对大家面试有用。类别1:数据读取与处理问题1:如何用Python从Excel文件中读取数据?答:在Python中,可以使用pandas库从Excel文件中读取数据。pandas提供了read_exce
- 【Python篇】深入机器学习核心:XGBoost 从入门到实战
半截诗
Pythonpython机器学习深度学习分类回归数据分析XGBoost
文章目录XGBoost完整学习指南:从零开始掌握梯度提升1.前言2.什么是XGBoost?2.1梯度提升简介3.安装XGBoost4.数据准备4.1加载数据4.2数据集划分5.XGBoost基础操作5.1转换为DMatrix格式5.2设置参数5.3模型训练5.4预测6.模型评估7.超参数调优7.1常用超参数7.2网格搜索8.XGBoost特征重要性分析9.高级功能扩展9.1模型解释与可解释性9.2
- es java match_ElasticSearch查询 第四篇:匹配查询(Match)
哈哈哈哈哈哈哈哈鸽
esjavamatch
《ElasticSearch查询》目录导航:匹配(Match)查询属于全文(Fulltext)查询,不同于词条查询,ElasticSearch引擎在处理全文搜索时,首先分析(analyze)查询字符串,然后根据分词构建查询,最终返回查询结果。匹配查询共有三种类型,分别是布尔(boolean)、短语(phrase)和短语前缀(phrase_prefix),默认的匹配查询是布尔类型,这意味着,Elas
- Python 数据建模完整流程指南
木觞清
3天入门Pythonpython开发语言
在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过Python展示数据建模的完整流程,包括数据准备、建模、评估和优化等步骤。1.导入必要的库在进行任何数据分析或建模之前,首先需要导入必需的Python库。这些库提供了各种工具和算法,帮助我们更高效地完成任务。importnumpyasnpim
- 随机森林分类算法原理与实验分析
ningaiiii
机器学习与深度学习随机森林分类算法
随机森林分类算法原理与实验分析1.引言随机森林(RandomForest)是一种集成学习方法,它通过构建多个决策树并结合它们的预测结果来进行分类。你可以把它想象成一个“团队决策”的过程:团队中的每个成员(决策树)都独立发表意见,最后通过投票决定最终结果。这种方法不仅提高了模型的准确性,还增强了模型的稳定性和鲁棒性。随机森林的主要特点是通过随机选择样本和特征来构建多个决策树,从而避免单棵决策树可能产
- 快速傅里叶变换
华东算法王(原聪明的小孩子
小孩哥总结MIT线性代数线性代数矩阵
快速傅里叶变换(FFT)快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像分析、数据压缩、声音合成等领域。传统的离散傅里叶变换算法的计算复杂度较高,而快速傅里叶变换通过减少计算量,大大提高了运算速度。1.离散傅里叶变换(DFT)离散傅里叶变换(DFT)将离散的时间信号变换到频域。对于一个长度为(N)的离散序
- 动态规划算法----回文串问题
阿_北
算法动态规划c++
引言在算法的世界里,回文串问题一直是一个经典且富有挑战性的题目。而动态规划作为一种强大的算法思想,为解决这类问题提供了高效且优雅的解决方案。本文将深入探讨如何运用动态规划算法来解决回文串相关问题,从问题描述、动态规划思路,到代码实现与复杂度分析,全面剖析这一过程。回文串问题描述回文串是指一个字符串从左到右读和从右到左读是完全一样的,例如“level”、“madam”等。常见的回文串问题有:给定一个
- matlab 代码主要实现了对一个具有各向异性材料的层合板的力学性能分析
go5463158465
算法深度学习MATLAB专栏python算法开发语言
clcclearcloseallclearclcformatlongg%formatshorte%初始化%板尺寸Chang=0.5;%板长lambda=1;%长宽比Kuan=Chang/lambda;%板宽%h=0.001
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla