有序表的查找——折半查找分析

折半查找

  • 一、折半查找的查找过程
    • 1、折半查找(Binary Search)
    • 2、二分查找的基本思想
  • 二、折半查找的实现
  • 三、折半查找的性能分析
  • 四、总结

一、折半查找的查找过程

1、折半查找(Binary Search)

折半查找又称二分查找,它是一种效率较高的查找方法。

二分查找要求:线性表是有序表,即表中结点按关键字有序,并且要用数组向量作为表的存储结构,不能使用链表,不妨设有序表是递增有序的。

2、二分查找的基本思想

二分查找的基本思想是:(设R[low…high]是当前的查找区间)

(1)首先确定该区间的中点位置:R[mid]

(2)然后将待查的K值与R[mid].key比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找,具体方法如下:

①若R[mid].key>K,则由表的有序性可知R[mid…n].keys均大于K,因此若表中存在关键字等于K的结点,则该结点必定是在位置mid左边的子表R[1…mid-1]中,故新的查找区间是左子表R[1…mid-1]。

②类似地,若R[mid].key

因此,从初始的查找区间R[1…n]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。这一过程重复直至找到关键字为K的结点,或者直至当前的查找区间为空(即查找失败)时为止。
有序表的查找——折半查找分析_第1张图片
有序表的查找——折半查找分析_第2张图片

二、折半查找的实现


int Search_Bin(StaicTable ST, Elemtype x,int low, int high){
//本函数在递增表ST中进行折半查找,如果查找成功,返回该元素所在位置,否则返回0
   found=false;
   while (low≤high  && !found) 
      {  mid=(low+high) / 2;
         if (x>ST[mid].key)     low=mid+1;
         else if (x<ST[mid].key)  high=mid-1;
         else                   found=true;
      } 
      if (found )  return mid;
      else           
         return 0;
 }

三、折半查找的性能分析

在这里我们先假定要查找的元素数目n恰好构成一棵满二叉树,然后为它加上n+1个外部结点,表示查找不成功的情形。

折半查找的过程可以用下面这样的判定树来模拟:
有序表的查找——折半查找分析_第3张图片
该树有m(=2n+1)个结点,高度为 K= log(m+1)=log(n+1)+1。

最坏情形下,就是查找不成功的情形必须要查到叶子结点,查找次数为K次,即log(n+1)+1

要求折半查找的平均情形,我们设落在每个结点的概率均为 1/m, 则总的查找次数为:

11/m + 2(21/m) + 3(41/m) + …… + k(2k-1*1/m)
有序表的查找——折半查找分析_第4张图片
而m=2k-1,故A(n)=((k-1)2k+1)/(2k)=(k-1)+1/2k

一般化(即非满二叉树),有:
在这里插入图片描述

四、总结

虽然二分查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算。既使采用高效率的排序方法也要花费O(nlog2n)的时间。

二分查找只适用顺序存储结构。为保持表的有序性,在顺序结构里插入和删除都必须移动大量的结点。因此,二分查找特别适用于那种一经建立就很少改动、而又经常需要查找的线性表。

对那些查找少而又经常需要改动的线性表,可采用链表作存储结构,进行顺序查找。链表上无法实现二分查找。

你可能感兴趣的:(数据结构,C语言,stu)