SCOI2010 序列操作

2421 序列操作

http://codevs.cn/problem/2421/

2010年省队选拔赛四川

 
题目描述 Description

lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作:

0 a b 把[a, b]区间内的所有数全变成0

1 a b 把[a, b]区间内的所有数全变成1

2 a b 把[a,b]区间内的所有数全部取反,也就是说把所有的0变成1,把所有的1变成0

3 a b 询问[a, b]区间内总共有多少个1

4 a b 询问[a, b]区间内最多有多少个连续的1

对于每一种询问操作,lxhgww都需要给出回答,聪明的程序员们,你们能帮助他吗?

输入描述 Input Description

   输入数据第一行包括2个数,n和m,分别表示序列的长度和操作数目

   第二行包括n个数,表示序列的初始状态

   接下来m行,每行3个数,op, a, b,(0<=op<=4,0<=a<=b

输出描述 Output Description

   对于每一个询问操作,输出一行,包括1个数,表示其对应的答案

样例输入 Sample Input

   10 10

   0 0 0 1 1 0 1 0 1 1

   1 0 2

   3 0 5

   2 2 2

   4 0 4

   0 3 6

   2 3 7

   4 2 8

   1 0 5

   0 5 6

   3 3 9

样例输出 Sample Output

   5

   2

   6

   5

数据范围及提示 Data Size & Hint

   对于30%的数据,1<=n, m<=1000

   对于100%的数据,1<=n, m<=100000

线段树

题目AC四步走

第一步:TLE 50分

代码中线段树均使用2n空间方法建树

维护信息:

0的个数sum_0,1的个数sum_1,  连续的0的个数con_0,  连续的1的个数con_1;
左端点连续0的个数l_0,  右端点连续0的个数r_0,  左端点连续1的个数l_1,  右端点连续1的个数r_1;
懒标记f,f=-1表示区间无标记,=0表示区间有一个全部更新为0的标记没有下穿,=1同理;

操作0,1:线段树基本的区间修改

操作2:可以一直递归到一个区间都是0或都是1时在操作,也相当于区间修改

操作3:线段树基本的区间查询

操作4:类似于求GSS的查询过程,在更新l_0,r_0,l_1,r_1时稍有不同,要先判断是否包括整个左右子区间

TLE 原因:多余的标记下传

1、标记下穿时,没有必要保证子节点的标记也下传了,因为有效标记只有两种,0,1,而且是对整个区间完全覆盖,所以多个标记只有最后一个有效

2、区间取反时,没有必要保证本区间标记下传,因为如果原来区间标记是0,意思是子区间要变为0,区间取反后区间标记是1,意思是子区间要变为1,与原来标记是什么无关。

第二步:AC 100分,总时间耗费: 881ms    总内存耗费: 11 MB

将导致TLE的3行删去

#include
#include
using namespace std;
struct node
{
    int l,r;
    int sum_0,sum_1,con_0,con_1,sum;
    int l_0,r_0,l_1,r_1;
    int f;
}e[200001];
int n,m,cnt,x,p,a,b,anss;
void change(int,int);
inline void up(int k)
{
    int l=k+1,r=k+e[k+1].sum*2;
    e[k].sum_0=e[l].sum_0+e[r].sum_0;
    e[k].sum_1=e[l].sum_1+e[r].sum_1;
    e[k].con_0=max(max(e[l].con_0,e[r].con_0),e[l].r_0+e[r].l_0);
    e[k].con_1=max(max(e[l].con_1,e[r].con_1),e[l].r_1+e[r].l_1);
    if(e[l].con_0==e[l].sum) e[k].l_0=e[l].sum+e[r].l_0;
    else e[k].l_0=e[l].l_0;
    if(e[r].con_0==e[r].sum) e[k].r_0=e[r].sum+e[l].r_0;
    else e[k].r_0=e[r].r_0;
    if(e[l].con_1==e[l].sum) e[k].l_1=e[l].sum+e[r].l_1;
    else e[k].l_1=e[l].l_1;
    if(e[r].con_1==e[r].sum) e[k].r_1=e[r].sum+e[l].r_1;
    else e[k].r_1=e[r].r_1;
}
inline void all_0(int k)
{
    e[k].sum_0=e[k].con_0=e[k].l_0=e[k].r_0=e[k].sum;
    e[k].sum_1=e[k].con_1=e[k].l_1=e[k].r_1=0;
}
inline void all_1(int k)
{
    e[k].sum_1=e[k].con_1=e[k].l_1=e[k].r_1=e[k].sum;
    e[k].sum_0=e[k].con_0=e[k].l_0=e[k].r_0=0;
}
inline void down(int k)
{
    if(e[k].l==e[k].r) return;
    int l=k+1,r=k+e[k+1].sum*2;
    //if(e[l].f!=-1) down(l); TLE
    //if(e[r].f!=-1) down(r); TLE
    if(!e[k].f)
    {
        all_0(l);all_0(r);
        e[l].f=e[r].f=0;
    }
    else
    {
        all_1(l);all_1(r);
        e[l].f=e[r].f=1;
    }
    e[k].f=-1;
}
inline void judge(int k)
{
    //if(e[k].f!=-1) down(k); TLE
    if(e[k].sum_0==e[k].sum) 
    {
        all_1(k);
        e[k].f=1;
    }
    else if(e[k].sum_1==e[k].sum) 
    {
        all_0(k);
        e[k].f=0;
    }
    else
    {            
        judge(k+1);
        judge(k+e[k+1].sum*2);        
    }
    if(e[k].f!=-1) down(k);
    if(e[k].l!=e[k].r) up(k);
}
inline void change(int k,int g)
{
    if(e[k].l>=a&&e[k].r<=b)
    {
        if(!g)        { all_0(k); e[k].f=0; }
        else if(g==1) { all_1(k); e[k].f=1; }
        else if(g==2) { judge(k); }
        else if(g==3) { anss+=e[k].sum_1; }
        return;
    }
    if(e[k].f!=-1) down(k);
    int mid=e[k].l+e[k].r>>1;
    if(a<=mid) change(k+1,g);
    if(b>mid) change(k+e[k+1].sum*2,g);
    up(k);
}
inline void build(int l,int r)
{
    cnt++;
    int h=cnt;
    e[cnt].l=l;e[cnt].r=r;
    e[cnt].sum=r-l+1;
    e[cnt].f=-1;
    if(l==r)
    {
        scanf("%d",&x);
        if(x) { e[cnt].sum_1=e[cnt].con_1=e[cnt].l_1=e[cnt].r_1=1; }
        else  { e[cnt].sum_0=e[cnt].con_0=e[cnt].l_0=e[cnt].r_0=1; }
        return;
    }
    int mid=l+r>>1;
    build(l,mid);build(mid+1,r);
    up(h);
}
inline void ask(int k,int & ans,int & ans_l,int & ans_r)
{
    int l=k+1,r=k+e[k+1].sum*2;
    if(e[k].l>=a&&e[k].r<=b)
    {
        ans=e[k].con_1;
        ans_l=e[k].l_1;
        ans_r=e[k].r_1;
        return;
    }
    if(e[k].f!=-1) down(k);
    int mid=e[k].l+e[k].r>>1;
    if(b<=mid) ask(l,ans,ans_l,ans_r);
    else if(a>mid) ask(r,ans,ans_l,ans_r);
    else
    {
        int lch_ans,lch_l_1,lch_r_1,rch_ans,rch_l_1,rch_r_1;
        ask(l,lch_ans,lch_l_1,lch_r_1);
        ask(r,rch_ans,rch_l_1,rch_r_1);
        ans=max(lch_ans,rch_ans);
        ans=max(ans,lch_r_1+rch_l_1);
        if(e[l].con_1==e[l].sum) ans_l=max(lch_l_1,e[l].sum+rch_l_1);
        else ans_l=lch_l_1;
        if(e[r].con_1==e[r].sum) ans_r=max(rch_r_1,e[r].sum+lch_r_1);
        else ans_r=rch_r_1;
    }
} 
int main()
{
    scanf("%d%d",&n,&m);
    build(0,n-1);
    int ans,ans_l,ans_r;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&p,&a,&b);
        switch(p)
        {
            case 0:change(1,0);break;
            case 1:change(1,1);break;
            case 2:change(1,2);break;
            case 3:anss=0,change(1,3),printf("%d\n",anss);break;
            case 4:ask(1,ans,ans_l,ans_r),printf("%d\n",ans);
        }
    }
}              
View Code

第三步:去掉多余信息    总时间耗费: 683ms  总内存耗费: 6 MB

老师讲课时提到要维护0的信息,是因为操作2可以直接交换0和1的信息来完成

但自己做的时候操作2不是这样实现的,所以0的信息不用维护

#include
#include
using namespace std;
struct node
{
    int l,r;
    int sum_1,con_1,sum;
    int l_1,r_1;
    int f;
}e[200001];
int n,m,cnt,x,p,a,b,anss;
void change(int,int);
inline void up(int k)
{
    int l=k+1,r=k+e[k+1].sum*2;
    e[k].sum_1=e[l].sum_1+e[r].sum_1;
    e[k].con_1=max(max(e[l].con_1,e[r].con_1),e[l].r_1+e[r].l_1);
    if(e[l].con_1==e[l].sum) e[k].l_1=e[l].sum+e[r].l_1;
    else e[k].l_1=e[l].l_1;
    if(e[r].con_1==e[r].sum) e[k].r_1=e[r].sum+e[l].r_1;
    else e[k].r_1=e[r].r_1;
}
inline void all_0(int k)
{
    e[k].sum_1=e[k].con_1=e[k].l_1=e[k].r_1=0;
}
inline void all_1(int k)
{
    e[k].sum_1=e[k].con_1=e[k].l_1=e[k].r_1=e[k].sum;
}
inline void down(int k)
{
    if(e[k].l==e[k].r) return;
    int l=k+1,r=k+e[k+1].sum*2;
    if(!e[k].f)
    {
        all_0(l);all_0(r);
        e[l].f=e[r].f=0;
    }
    else
    {
        all_1(l);all_1(r);
        e[l].f=e[r].f=1;
    }
    e[k].f=-1;
}
inline void judge(int k)
{
    if(!e[k].sum_1) 
    {
        all_1(k);
        e[k].f=1;
    }
    else if(e[k].sum_1==e[k].sum) 
    {
        all_0(k);
        e[k].f=0;
    }
    else
    {    
        judge(k+1);
        judge(k+e[k+1].sum*2);        
    }
    if(e[k].f!=-1) down(k);
    if(e[k].l!=e[k].r) up(k);
}
inline void change(int k,int g)
{
    if(e[k].l>=a&&e[k].r<=b)
    {
        if(!g)        { all_0(k); e[k].f=0; }
        else if(g==1) { all_1(k); e[k].f=1; }
        else if(g==2) { judge(k); }
        else if(g==3) { anss+=e[k].sum_1; }
        return;
    }
    if(e[k].f!=-1) down(k);
    int mid=e[k].l+e[k].r>>1;
    if(a<=mid) change(k+1,g);
    if(b>mid) change(k+e[k+1].sum*2,g);
    up(k);
}
inline void build(int l,int r)
{
    cnt++;
    int h=cnt;
    e[cnt].l=l;e[cnt].r=r;
    e[cnt].sum=r-l+1;
    e[cnt].f=-1;
    if(l==r)
    {
        scanf("%d",&x);
        if(x) { e[cnt].sum_1=e[cnt].con_1=e[cnt].l_1=e[cnt].r_1=1; }
        return;
    }
    int mid=l+r>>1;
    build(l,mid);build(mid+1,r);
    up(h);
}
inline void ask(int k,int & ans,int & ans_l,int & ans_r)
{
    int l=k+1,r=k+e[k+1].sum*2;
    if(e[k].l>=a&&e[k].r<=b)
    {
        ans=e[k].con_1;
        ans_l=e[k].l_1;
        ans_r=e[k].r_1;
        return;
    }
    if(e[k].f!=-1) down(k);
    int mid=e[k].l+e[k].r>>1;
    if(b<=mid) ask(l,ans,ans_l,ans_r);
    else if(a>mid) ask(r,ans,ans_l,ans_r);
    else
    {
        int lch_ans,lch_l_1,lch_r_1,rch_ans,rch_l_1,rch_r_1;
        ask(l,lch_ans,lch_l_1,lch_r_1);
        ask(r,rch_ans,rch_l_1,rch_r_1);
        ans=max(lch_ans,rch_ans);
        ans=max(ans,lch_r_1+rch_l_1);
        if(e[l].con_1==e[l].sum) ans_l=max(lch_l_1,e[l].sum+rch_l_1);
        else ans_l=lch_l_1;
        if(e[r].con_1==e[r].sum) ans_r=max(rch_r_1,e[r].sum+lch_r_1);
        else ans_r=rch_r_1;
    }
} 
int main()
{
    scanf("%d%d",&n,&m);
    build(0,n-1);
    int ans,ans_l,ans_r;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&p,&a,&b);
        switch(p)
        {
            case 0:change(1,0);break;
            case 1:change(1,1);break;
            case 2:change(1,2);break;
            case 3:anss=0,change(1,3),printf("%d\n",anss);break;
            case 4:ask(1,ans,ans_l,ans_r),printf("%d\n",ans);
        }
    }
}  
View Code

第四步:换方法   操作2按上面说的实现

然而代码越改越长,空间越勇越大,时间越用越多,却并没有AC

这道题耗了1天了,时间不允许了,日后再改吧

#include
#include
using namespace std;
struct node
{
    int l,r;
    int sum_0,sum_1,con_0,con_1,sum;
    int l_0,r_0,l_1,r_1;
    int f;
    bool f2;
}e[200001];
int n,m,cnt,x,p,a,b,anss;
void change(int,int);
inline void up(int k)
{
    int l=k+1,r=k+e[k+1].sum*2;
    e[k].sum_0=e[l].sum_0+e[r].sum_0;
    e[k].sum_1=e[l].sum_1+e[r].sum_1;
    e[k].con_0=max(max(e[l].con_0,e[r].con_0),e[l].r_0+e[r].l_0);
    e[k].con_1=max(max(e[l].con_1,e[r].con_1),e[l].r_1+e[r].l_1);
    if(e[l].con_0==e[l].sum) e[k].l_0=e[l].sum+e[r].l_0;
    else e[k].l_0=e[l].l_0;
    if(e[r].con_0==e[r].sum) e[k].r_0=e[r].sum+e[l].r_0;
    else e[k].r_0=e[r].r_0;
    if(e[l].con_1==e[l].sum) e[k].l_1=e[l].sum+e[r].l_1;
    else e[k].l_1=e[l].l_1;
    if(e[r].con_1==e[r].sum) e[k].r_1=e[r].sum+e[l].r_1;
    else e[k].r_1=e[r].r_1;
}
inline void all_0(int k)
{
    e[k].sum_0=e[k].con_0=e[k].l_0=e[k].r_0=e[k].sum;
    e[k].sum_1=e[k].con_1=e[k].l_1=e[k].r_1=0;
}
inline void all_1(int k)
{
    e[k].sum_1=e[k].con_1=e[k].l_1=e[k].r_1=e[k].sum;
    e[k].sum_0=e[k].con_0=e[k].l_0=e[k].r_0=0;
}
inline void judge(int k)
{
    swap(e[k].con_0,e[k].con_1);
    swap(e[k].sum_0,e[k].sum_1);
    swap(e[k].l_0,e[k].l_1);
    swap(e[k].r_0,e[k].r_1);
    if(e[k].l!=e[k].r) {e[k].f=2;e[k].f2=true;}
}
void ww(int l)
{
        if(e[l].l==e[l].r) judge(l);
        else if(e[l].f==0) {e[l].f=1;e[l].f2=false;}
        else if(e[l].f==1) {e[l].f=0;e[l].f2=false;}
        else if(e[l].f==2) e[l].f=-1;
        else                judge(l);
}
inline void down(int k)
{
    if(e[k].l==e[k].r) return;
    int l=k+1,r=k+e[k+1].sum*2;
    if(!e[k].f)
    {
        all_0(l);all_0(r);
        if(e[l].l!=e[l].r) 
        {
            e[l].f=e[r].f=0;
            e[l].f2=e[r].f2=true;
        }
        
    }
    else if(e[k].f==1)
    {
        all_1(l);all_1(r);
        if(e[k].l!=e[k].r) 
        {
            e[l].f=e[r].f=1;
            e[r].f2=e[l].f2=true;
        }
    
    }
    else
    {        
        ww(l);
        ww(r);
        if(e[k].l!=e[k].r) up(k);
    } 
    e[k].f=-1;
}
inline int mm(int k)
{
    if(e[k].f==-1) return e[k].sum_1;
    if(e[k].f2==true) return e[k].sum_1;
    if(e[k].f==0) return 0;
    if(e[k].f==1) return e[k].sum;
    if(e[k].f==2) return e[k].sum_0;
}
inline void change(int k,int g)
{
    if(e[k].l>=a&&e[k].r<=b)
    {
        if(!g) 
        { 
            all_0(k); 
            if(e[k].l!=e[k].r)  e[k].f=0; 
        }
        else if(g==1) 
        { 
            all_1(k); 
            if(e[k].l!=e[k].r) e[k].f=1; 
        }
        else if(g==2) { ww(k); }
        else if(g==3) { anss+=mm(k); }
        return;
    }
    if(e[k].f!=-1) down(k);
    int mid=e[k].l+e[k].r>>1;
    if(a<=mid) change(k+1,g);
    if(b>mid) change(k+e[k+1].sum*2,g);
    up(k);
}
inline void build(int l,int r)
{
    cnt++;
    int h=cnt;
    e[cnt].l=l;e[cnt].r=r;
    e[cnt].sum=r-l+1;
    e[cnt].f=-1;
    e[cnt].f2=true;
    if(l==r)
    {
        scanf("%d",&x);
        if(x) { e[cnt].sum_1=e[cnt].con_1=e[cnt].l_1=e[cnt].r_1=1; }
        else { e[cnt].sum_0=e[cnt].con_0=e[cnt].l_0=e[cnt].r_0=1; }
        return;
    }
    int mid=l+r>>1;
    build(l,mid);build(mid+1,r);
    up(h);
}
inline void ask(int k,int & ans,int & ans_l,int & ans_r)
{
    int l=k+1,r=k+e[k+1].sum*2;
    if(e[k].l>=a&&e[k].r<=b)
    {
        if(e[k].f2==true)
        {
            ans=e[k].con_1;
            ans_l=e[k].l_1;
            ans_r=e[k].r_1;            
        }
        else
        {
            ans=e[k].con_0;
            ans_l=e[k].l_0;
            ans_r=e[k].r_0;    
        }
        return;
    }
    if(e[k].f!=-1) down(k);
    int mid=e[k].l+e[k].r>>1;
    if(b<=mid) ask(l,ans,ans_l,ans_r);
    else if(a>mid) ask(r,ans,ans_l,ans_r);
    else
    {
        int lch_ans,lch_l_1,lch_r_1,rch_ans,rch_l_1,rch_r_1;
        ask(l,lch_ans,lch_l_1,lch_r_1);
        ask(r,rch_ans,rch_l_1,rch_r_1);
        ans=max(lch_ans,rch_ans);
        ans=max(ans,lch_r_1+rch_l_1);
        if(e[l].con_1==e[l].sum) ans_l=max(lch_l_1,e[l].sum+rch_l_1);
        else ans_l=lch_l_1;
        if(e[r].con_1==e[r].sum) ans_r=max(rch_r_1,e[r].sum+lch_r_1);
        else ans_r=rch_r_1;
    }
} 
int main()
{
    scanf("%d%d",&n,&m);
    build(0,n-1);
    int ans,ans_l,ans_r;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&p,&a,&b);
        switch(p)
        {
            case 0:change(1,0);break;
            case 1:change(1,1);break;
            case 2:change(1,2);break;
            case 3:anss=0,change(1,3),printf("%d\n",anss);break;
            case 4:ask(1,ans,ans_l,ans_r),printf("%d\n",ans);
        }
    }
}
错误代码

第一步中出现的错误

1、第一次提交RE

2、第二次提交10分,找出RE的错误:down函数里区间标记下传时,没有判断是否到了叶子节点。因为2*n的空间建树,没有节点浪费,但也没有了多余的节点,4*空间建树可以不用判断

3、第三次提交10分,找出部分错误:down函数里区间标记下传时,只更改了子区间的0,1信息,忘了更改懒标记

4、第四次提交TLE50分,找出所有错误:judge函数区间取反时,

   ①没有在每次取反后标记下传,

     如果本区间全是0或1,当然要下传标记。

     如果本区间不全是0或1,那区间没有标记,就不需要下穿,又因为没有标记是-1,下传会导致错误,所以 ③要先判断是否需要下传标记

  ②没有对区间修改后的区间信息合并,线段树的修改操作改完要合并信息,又因为2*n的空间建树,所以要 ④先判断是否是叶子节点再合并。change函数里不需要判断叶子节点,是因为到达的叶子节点一定属于操作区间,在合并之前会return

第四步做了一上午,交了10遍,全是10分,放弃,O| ̄|_

错误全部集中在down、和取反两个函数里,而down函数只写过求和和最大值的标记,取反函数第一次写,其余函数以前写过,没有错误

 

转载于:https://www.cnblogs.com/TheRoadToTheGold/p/6362729.html

你可能感兴趣的:(SCOI2010 序列操作)