2019数据智能算法大赛个人baseline

2019数据智能算法大赛个人baseline

  • 在google colaboratory上使用
  • 导入相应的包
  • 数据的读入
    • 数据探索性分析 pandas_profiling
  • 特征工程
    • 数据预处理
      • 查看缺失值,并且缺失的个数要从低到高排序
      • 缺失值处理
      • 将字符类型转换为数值类型
    • 特征提取
  • 建模训练预测

在google colaboratory上使用

from google.colab import drive
drive.mount('/content/drive')

导入相应的包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from datetime import timedelta
import pandas_profiling as ppf
import datetime

from sklearn.model_selection import train_test_split
import lightgbm as lgb

import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

数据的读入

full = pd.read_csv('/content/drive/My Drive/Colab Notebooks/DC/round1_diac2019_train.csv')
full.head()
# 先输入数据的基本信息。
# 这是一个好习惯,可以对数据的规模、各个特征的数据类型以及是否有缺失等,有一个总体的了解。
print(full.info())

数据探索性分析 pandas_profiling

ppf.ProfileReport(full)

特征工程

数据预处理

查看缺失值,并且缺失的个数要从低到高排序

# 统计出空值的个数
miss = full.isnull().sum()
# 由低到高进行排序
miss[miss>0].sort_values(ascending=True)

缺失值处理

# 记录待预测的所有用户id
# drop_duplicates去除重复项 dropna()滤除缺失数据
all_customer = pd.DataFrame(full[['customer_id']]).drop_duplicates(['customer_id']).dropna()

# order_total_amount = order_total_payment + order_total_discount
full["order_total_discount"] = full["order_amount"] - full["order_total_payment"]
full_neg_order_total_discount = full.loc[full.order_total_discount <0, 'order_total_discount']
full.loc[full.order_total_discount <0, 'order_total_discount'] = 0 - full_neg_order_total_discount
full.loc[full.order_amount<full.order_total_payment,'order_amount'] += full.loc[full.order_amount<full.order_total_payment,'order_total_discount']
full.drop(['order_total_payment'],axis=1,inplace=True)
# 对字符类型的缺失值进行填充
cols = ["customer_province" , "customer_city"]
for col in cols:
    full[col].fillna("None",inplace=True)

# 对数值类型的缺失值进行填充
cols1=["is_customer_rate", "customer_gender", "is_member_actived"]
for col in cols1:
    full[col].fillna(0, inplace=True)

# 对这些列用众数进行填充
cols2 = ["customer_id","member_status"]
for col in cols2:
    full[col].fillna(full[col].mode()[0], inplace=True)

将字符类型转换为数值类型

# 针对customer_province处理
customer_province_cold = ['香港特别行政区','台湾','柔佛']
customer_province_hot1 = ['广东省','浙江省','江苏省','上海','北京','None']
customer_province_hot2 = ['四川省','湖北省','山东省','河南省','福建省','安徽省','湖南省']
customer_province_hot3 = ['辽宁省','江西省','重庆','河北省','陕西省','云南省']
customer_province_hot4 = ['广西壮族自治区','天津','黑龙江省','贵州省','吉林省',
                          '山西省','内蒙古自治区','新疆维吾尔自治区','甘肃省',
                          '海南省','西藏自治区','宁夏回族自治区','青海省']


for province_col_cold in customer_province_cold:
  full.loc[full.customer_province == province_col_cold, 'customer_province'] = 0
  
for province_col_hot1 in customer_province_hot1:
  full.loc[full.customer_province == province_col_hot1, 'customer_province'] = 1
  
for province_col_hot2 in customer_province_hot2:
  full.loc[full.customer_province == province_col_hot2, 'customer_province'] = 2
  
for province_col_hot3 in customer_province_hot3:
  full.loc[full.customer_province == province_col_hot3, 'customer_province'] = 3
  
for province_col_hot4 in customer_province_hot4:
  full.loc[full.customer_province == province_col_hot4, 'customer_province'] = 4
# 针对customer_city处理
full_customer_city = full['customer_city'].drop_duplicates().dropna().values.tolist()
customer_city_hot1 = ['上海市','None','北京市','广州市','杭州市','成都市','武汉市','深圳市']
customer_city_hot2 = ['南京市','重庆市','苏州市','天津市','长沙市','郑州市','西安市']
customer_city_hot3 = ['合肥市','宁波市','福州市','昆明市','温州市','东莞市','青岛市',
                      '沈阳市','厦门市','佛山市','南昌市','无锡市','济南市','哈尔滨市']
customer_city_cold = list(set(full_customer_city) - set(customer_city_hot1) - set(customer_city_hot2) - set(customer_city_hot3))

for city_col_hot1 in customer_city_hot1:
  full.loc[full.customer_city == city_col_hot1, 'customer_city'] = 1
  
for city_col_hot2 in customer_city_hot2:
  full.loc[full.customer_city == city_col_hot2, 'customer_city'] = 2
  
for city_col_hot3 in customer_city_hot3:
  full.loc[full.customer_city == city_col_hot3, 'customer_city'] = 3

for city_col_cold in customer_city_cold:
  full.loc[full.customer_city == city_col_cold, 'customer_city'] = 0
from sklearn.preprocessing import LabelEncoder#标签编码
lab = LabelEncoder()

#full["customer_province"] = lab.fit_transform(full.customer_province).astype('int64')
#full["customer_city"] = lab.fit_transform(full.customer_city).astype('int64')

# 浮点转为整型
full["customer_city"] = full["customer_city"].astype('int64')
full["customer_gender"] = full["customer_gender"].astype('int64')
full["member_status"] = full["member_status"].astype('int64')
full["is_member_actived"] = full["is_member_actived"].astype('int64')
full["is_customer_rate"] = full["is_customer_rate"].astype('int64')
full["customer_id"] = full["customer_id"].astype('int64')

# 利用ID
full.loc[full.member_id !=0, 'member_id'] = 1

特征提取

# 查看order_pay_time的范围
print('full date gap',full.order_pay_time.min(),'->',full.order_pay_time.max()) 
full['order_pay_time'] = pd.to_datetime(full['order_pay_time'])  # 转换日期格式 例:2013-01-01 14:25:30
full['order_pay_date'] = full['order_pay_time'].dt.date   # 只取日期时间date部分 例:2013-01-01
# 取验证集开始的时间,即2013-07-04
validata_date_begin = full['order_pay_date'].max() - datetime.timedelta(days=180) # timedelta模块 时间增减用法

# full前180天 order_pay_date 的数据
train_history = full[(full['order_pay_date'].astype(str)<='2013-07-03')]  # astype() 实现变量类型转换
# full  360天 order_pay_date 的数据
online_history = full[(full['order_pay_date'].astype(str)<='2013-12-31')]
# train_label 相对于 train_history 的未来180天的数据
train_label = full[full['order_pay_date'].astype(str)>='2013-07-04']
# 使数据有折扣和值为19.99,9.90,19.90,0.01—>order_total_discount = 1
train_history.loc[train_history.order_total_discount>0, 'order_total_discount'] = 1
online_history.loc[online_history.order_total_discount>0, 'order_total_discount'] = 1

order_amount_nums = [19.99,9.90,19.90,0.01]
for order_amount_num in order_amount_nums:
  train_history.loc[train_history.order_amount==order_amount_num, 'order_total_discount'] = 1
  online_history.loc[online_history.order_amount==order_amount_num, 'order_total_discount'] = 1
# make label
train_history['label'] = 0
train_history.loc[train_history['customer_id'].isin(list(train_label['customer_id'].unique())),'label'] = 1  # isin()接受一个列表,判断该列中元素是否在列表中。
train_history['label'].value_counts()
# 重新制作训练集和测试集的特征
def make_new_feature1(feature,isSubmit):
  feature['count'] = 1
  # 统计单个用户出现了多少次
  customer_id_count = feature.groupby(['customer_id'],as_index=False)['count'].agg({'count':'count'})
  # 统计单个用户第一次和最后一次购买订单时间
  last_time = feature.groupby(['customer_id'],as_index=False)['order_pay_date'].agg({'order_pay_date_first':'min',
                                                                                     'order_pay_date_last':'max'})
  # 合并以上数据
  print('start to merge!')
  
  data = pd.merge(customer_id_count,last_time,on=['customer_id'],how='left',copy=False)
  # 记录购买间隔时间
  data['pay_interval_time'] = pd.to_datetime(data['order_pay_date_last']) - pd.to_datetime(data['order_pay_date_first'])
  data['pay_interval_time'] = data['pay_interval_time'].dt.days + 1
  # 购买距离双十一时间
  data['pay_11interval_time'] = pd.to_datetime('2013-11-11') - pd.to_datetime(data['order_pay_date_last'])
  data['pay_11interval_time'] = data['pay_11interval_time'].dt.days + 1
  del data['order_pay_date_first']
  if isSubmit==False:
    data['order_pay_date_last'] = pd.to_datetime('2013-07-03') - pd.to_datetime(data['order_pay_date_last'])
    data['order_pay_date_last'] = data['order_pay_date_last'].dt.days + 1
  else:
    data['order_pay_date_last'] = pd.to_datetime('2013-12-31') - pd.to_datetime(data['order_pay_date_last'])
    data['order_pay_date_last'] = data['order_pay_date_last'].dt.days + 1
  
  
  print(data.shape)
  return data
# 生成训练数据和提交数据
train1 = make_new_feature1(train_history,False)
test1 = make_new_feature1(online_history,True)
# 超过双十一都改为距离下一年双十一的时间
pay_11interval_time_neg = test1.loc[test1.pay_11interval_time <0, 'pay_11interval_time']
test1.loc[test1.pay_11interval_time <0, 'pay_11interval_time'] = 365 + pay_11interval_time_neg
# 添加新的特征
def make_new_feature2(feature, train1):
  # 性别
  customer_gender = feature.groupby(['customer_id'],as_index=False)['customer_gender'].agg({'customer_gender':'max'}) 
  
  # 用户所在省市    
  customer_province = feature.groupby(['customer_id'],as_index=False)["customer_province"].agg({'customer_province':'max'})
  customer_city = feature.groupby(['customer_id'],as_index=False)["customer_city"].agg({'customer_city':'median'})
  
  # 支持会员折扣
  goods_has_discount = feature.groupby(['customer_id'],as_index=False)["goods_has_discount"].agg({'goods_has_discount_count':'count'})
                                                                                                  #'goods_has_discount_sum':'sum'})
                                                                                                 #'goods_has_discount_min':'min'})
  
  # 用户评价的次数以及用户评价率
  def evaluate_rate_computer(group):
    return (group.sum()) / (group.count())  
  evaluate_count = feature.groupby(['customer_id'],as_index=False)["is_customer_rate"].agg({'evaluate_count':'sum',
                                                                                            'evaluate_rate':evaluate_rate_computer})  
  
  # 用户是否是会员
  is_member = feature.groupby(['customer_id'],as_index=False)["member_status"].agg({'is_member':'mean'})  
#   is_member = feature.groupby(['customer_id'],as_index=False)["member_id"].agg({'is_member':'max'})  
    
  # 合并以上数据
  print('start to merge!')    
    
  data = pd.merge(train1,customer_gender,on=['customer_id'],how='left',copy=False)
  data = pd.merge(data,customer_province,on=['customer_id'],how='left',copy=False)
  data = pd.merge(data,customer_city,on=['customer_id'],how='left',copy=False)
  data = pd.merge(data,goods_has_discount,on=['customer_id'],how='left',copy=False)
  data = pd.merge(data,evaluate_count,on=['customer_id'],how='left',copy=False)
  data = pd.merge(data,is_member,on=['customer_id'],how='left',copy=False)
    
  print(data.shape)
  return data
# 生成训练数据和提交数据
train2 = make_new_feature2(train_history, train1)
test2 = make_new_feature2(online_history, test1)
def make_new_feature3(feature, train2):
  # 统计这个用户购买商品的价格信息
  good_price = feature.groupby(['customer_id'],as_index=False)['goods_price'].agg({'goods_price_max':'max',
                                                                                   'goods_price_min':'min',
                                                                                   'goods_price_mean':'mean'})                                                                                
#   # 订单应付总金额
#   order_amount = feature.groupby(['customer_id'],as_index=False)['order_amount'].agg({'order_amount_max':'max',
#                                                                                       'order_amount_min':'min',
#                                                                                       'order_amount_sum':'sum'})
  # 订单优惠金额
  order_total_discount = feature.groupby(['customer_id'],as_index=False)['order_total_discount'].agg({'order_total_discount_sum':'sum'})
#                                                                                                       #'order_total_discount_min':'min',
#                                                                                                       #'order_total_discount_max':'max'})
  
    
  # 合并以上数据
  print('start to merge!')    
    
  data = pd.merge(train2,good_price,on=['customer_id'],how='left',copy=False)
#   data = pd.merge(data,order_amount,on=['customer_id'],how='left',copy=False)
  data = pd.merge(data,order_total_discount,on=['customer_id'],how='left',copy=False)
  
  
  print(data.shape)
  return data  
# 生成训练数据和提交数据
train3 = make_new_feature3(train_history, train2)
test3 = make_new_feature3(online_history, test2)
def make_label(labels,train3):
  label = labels.groupby(['customer_id'],as_index=False)['label'].agg({'label':'max'})  
  
  data = pd.merge(train3,label,on=['customer_id'],how='left',copy=False)
  print(data.shape)
  return data
train = make_label(train_history,train3)
test = test3.copy()
print(test.shape)
train["customer_city"] = train["customer_city"].astype('int64')
test["customer_city"] = test["customer_city"].astype('int64')
train["order_total_discount_sum"] = train["order_total_discount_sum"].astype('int64')
test["order_total_discount_sum"] = test["order_total_discount_sum"].astype('int64')

建模训练预测

# 构建机器学习所需的label和data
train_copy = train.copy()
y = train_copy.pop('label')
feature = [x for x in train_copy.columns if x not in ['customer_id']]
X = train_copy[feature]

# 训练与测试数据标准化处理
from sklearn.preprocessing import StandardScaler
ss_X = StandardScaler()
X_scaled = ss_X.fit_transform(X)

# 划分训练集和验证集
X_train, X_valid, y_train, y_valid = train_test_split(X_scaled, y, test_size=0.5, random_state=33)
# 参数
param = {
    'num_leaves':40,
    'objective':'binary',
    'max_depth':5,
    'learning_rate':0.1,
    'metric':'binary_logloss'}

test_df = test[['customer_id']]
X_test = test[feature]
#
train_data = lgb.Dataset(X_train, label=y_train)
valid_data = lgb.Dataset(X_valid, label=y_valid)
lgbm = lgb.train(param,train_data,valid_sets=[train_data,valid_data],
                 num_boost_round = 10000 ,
                 early_stopping_rounds=250,
                 verbose_eval=50)
y_test = lgbm.predict(X_test)
print(pd.DataFrame({
    'column':feature,
    'importance':lgbm.feature_importance()
}).sort_values(by='importance'))
test_df['result'] = y_test

all_customer_submit = pd.merge(all_customer,test_df,on=['customer_id'],how='left',copy=False)
all_customer_submit = all_customer_submit.sort_values(['customer_id'])
all_customer_submit['customer_id'] = all_customer_submit['customer_id'].astype('int64')
all_customer_submit['result'] = all_customer_submit['result'].fillna(0)
all_customer_submit.to_csv('./DC_2019results.csv',index=False)

你可能感兴趣的:(2019数据智能算法大赛个人baseline)