数据库读写分离,数据库性能瓶颈

有一些技术同学可能对于“读写分离”了解不多,认为数据库的负载问题都可以使用“读写分离”来解决。

这其实是一个非常大的误区,我们要用“读写分离”,首先应该明白“读写分离”是用来解决什么样的问题的,而不是仅仅会用这个技术。

什么是读写分离?

其实就是将数据库分为了主从库,一个主库用于写数据,多个从库完成读数据的操作,主从库之间通过某种机制进行数据的同步,是一种常见的数据库架构。

一个组从同步集群,通常被称为是一个“分组”。

数据库分组架构解决什么问题?

大多数互联网业务,往往读多写少,这时候,数据库的读会首先称为数据库的瓶颈,这时,如果我们希望能够线性的提升数据库的读性能,消除读写锁冲突从而提升数据库的写性能,那么就可以使用“分组架构”(读写分离架构)。

用一句话概括,读写分离是用来解决数据库的读性能瓶颈的。

但是,不是任何读性能瓶颈都需要使用读写分离,我们还可以有其他解决方案。

在互联网的应用场景中,常常数据量大、并发量高、高可用要求高、一致性要求高,如果使用“读写分离”,就需要注意这些问题:

数据库连接池要进行区分,哪些是读连接池,哪个是写连接池,研发的难度会增加;为了保证高可用,读连接池要能够实现故障自动转移;主从的一致性问题需要考虑。在这么多的问题需要考虑的情况下,如果我们仅仅是为了解决“数据库读的瓶颈问题”,为什么不选择使用缓存呢?

为什么用缓存

缓存,也是互联网中常常使用到的一种架构方式,同“读写分离”不同,读写分离是通过多个读库,分摊了数据库读的压力,而存储则是通过缓存的使用,减少了数据库读的压力。他们没有谁替代谁的说法,但是,如果在缓存的读写分离进行二选一时,还是应该首先考虑缓存。

为什么呢?

缓存的使用成本要比从库少非常多;缓存的开发比较容易,大部分的读操作都可以先去缓存,找不到的再渗透到数据库。当然,如果我们已经运用了缓存,但是读依旧还是瓶颈时,就可以选择“读写分离”架构了。简单来说,我们可以将读写分离看做是缓存都解决不了时的一种解决方案。

当然,缓存也不是没有缺点的

对于缓存,我们必须要考虑的就是高可用,不然,如果缓存一旦挂了,所有的流量都同时聚集到了数据库上,那么数据库是肯定会挂掉的。

对于常见的数据库瓶颈是什么呢?

其实是数据容量的瓶颈。例如订单表,数据量只增不减,历史数据又必须要留存,非常容易成为性能的瓶颈,而要解决这样的数据库瓶颈问题,“读写分离”和缓存往往都不合适,最适合的是什么呢?

数据库水平切分

什么是数据库水平切分?

数据库水平切分,也是一种常见的数据库架构,是一种通过算法,将数据库进行分割的架构。一个水平切分集群中的每个数据库,通常称为一个“分片”。每一个分片中的数据没有重合,所有分片中的数据并集组成全部数据。

数据库读写分离,数据库性能瓶颈_第1张图片

水平切分架构解决什么问题呢?

大部分的互联网业务,数据量都非常大,单库容量最容易成为瓶颈,当单库的容量成为了瓶颈,我们希望提高数据库的写性能,降低单库容量的话,就可以采用水平切分了。

而有少部分程序员,会没有分析数据库的性能瓶颈是什么,就贸贸然的使用“读写分离”,殊不知“水平切分”才是正道。

你可能感兴趣的:(数据库读写分离,数据库性能瓶颈)