上一章节使用深度学习来完成文本表示,通过fastText
模型进行文本分类。这一章节采用Word2Vec做向量表示,通过TextCNN以及TextRNN的深度学习模型来做文本分类。
使用gensim训练word2vec
设置随机种子。
import logging
import random
import numpy as np
import torch
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')
# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
把数据划分为10类,作10折交叉验证。
# split data to 10 fold
fold_num = 10
data_file = '../data/train_set.csv'
import pandas as pd
def all_data2fold(fold_num, num=10000):
fold_data = []
f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()[:num]
labels = f['label'].tolist()[:num]
total = len(labels)
index = list(range(total))
np.random.shuffle(index)
all_texts = []
all_labels = []
for i in index:
all_texts.append(texts[i])
all_labels.append(labels[i])
label2id = {}
for i in range(total):
label = str(all_labels[i])
if label not in label2id:
label2id[label] = [i]
else:
label2id[label].append(i)
all_index = [[] for _ in range(fold_num)]
for label, data in label2id.items():
# print(label, len(data))
batch_size = int(len(data) / fold_num)
other = len(data) - batch_size * fold_num
for i in range(fold_num):
cur_batch_size = batch_size + 1 if i < other else batch_size
# print(cur_batch_size)
batch_data = [data[i * batch_size + b] for b in range(cur_batch_size)]
all_index[i].extend(batch_data)
batch_size = int(total / fold_num)
other_texts = []
other_labels = []
other_num = 0
start = 0
for fold in range(fold_num):
num = len(all_index[fold])
texts = [all_texts[i] for i in all_index[fold]]
labels = [all_labels[i] for i in all_index[fold]]
if num > batch_size:
fold_texts = texts[:batch_size]
other_texts.extend(texts[batch_size:])
fold_labels = labels[:batch_size]
other_labels.extend(labels[batch_size:])
other_num += num - batch_size
elif num < batch_size:
end = start + batch_size - num
fold_texts = texts + other_texts[start: end]
fold_labels = labels + other_labels[start: end]
start = end
else:
fold_texts = texts
fold_labels = labels
assert batch_size == len(fold_labels)
# shuffle
index = list(range(batch_size))
np.random.shuffle(index)
shuffle_fold_texts = []
shuffle_fold_labels = []
for i in index:
shuffle_fold_texts.append(fold_texts[i])
shuffle_fold_labels.append(fold_labels[i])
data = {'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
fold_data.append(data)
logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))
return fold_data
fold_data = all_data2fold(10)
训练数据,将文本做向量表示,并保存。
# build train data for word2vec
fold_id = 9
train_texts = []
for i in range(0, fold_id):
data = fold_data[i]
train_texts.extend(data['text'])
logging.info('Total %d docs.' % len(train_texts))
logging.info('Start training...')
from gensim.models.word2vec import Word2Vec
num_features = 100 # Word vector dimensionality
num_workers = 8 # Number of threads to run in parallel
train_texts = list(map(lambda x: list(x.split()), train_texts))
model = Word2Vec(train_texts, workers=num_workers, size=num_features)
model.init_sims(replace=True)
# save model
model.save("./word2vec.bin")
# load model
model = Word2Vec.load("./word2vec.bin")
# convert format
model.wv.save_word2vec_format('./word2vec.txt', binary=False)
TextCNN利用CNN(卷积神经网络)进行文本特征抽取,不同大小的卷积核分别抽取n-gram特征,卷积计算出的特征图经过MaxPooling保留最大的特征值,然后将拼接成一个向量作为文本的表示。
这里我们基于TextCNN原始论文的设定,分别采用了100个大小为2,3,4的卷积核,最后得到的文本向量大小为100*3=300维。
import logging
import random
import numpy as np
import torch
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')
# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
# set cuda
gpu = 0
use_cuda = gpu >= 0 and torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(gpu)
device = torch.device("cuda", gpu)
else:
device = torch.device("cpu")
logging.info("Use cuda: %s, gpu id: %d.", use_cuda, gpu)
# split data to 10 fold
fold_num = 10
data_file = '../data/train_set.csv'
import pandas as pd
def all_data2fold(fold_num, num=10000):
fold_data = []
f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()[:num]
labels = f['label'].tolist()[:num]
total = len(labels)
index = list(range(total))
np.random.shuffle(index)
all_texts = []
all_labels = []
for i in index:
all_texts.append(texts[i])
all_labels.append(labels[i])
label2id = {}
for i in range(total):
label = str(all_labels[i])
if label not in label2id:
label2id[label] = [i]
else:
label2id[label].append(i)
all_index = [[] for _ in range(fold_num)]
for label, data in label2id.items():
# print(label, len(data))
batch_size = int(len(data) / fold_num)
other = len(data) - batch_size * fold_num
for i in range(fold_num):
cur_batch_size = batch_size + 1 if i < other else batch_size
# print(cur_batch_size)
batch_data = [data[i * batch_size + b] for b in range(cur_batch_size)]
all_index[i].extend(batch_data)
batch_size = int(total / fold_num)
other_texts = []
other_labels = []
other_num = 0
start = 0
for fold in range(fold_num):
num = len(all_index[fold])
texts = [all_texts[i] for i in all_index[fold]]
labels = [all_labels[i] for i in all_index[fold]]
if num > batch_size:
fold_texts = texts[:batch_size]
other_texts.extend(texts[batch_size:])
fold_labels = labels[:batch_size]
other_labels.extend(labels[batch_size:])
other_num += num - batch_size
elif num < batch_size:
end = start + batch_size - num
fold_texts = texts + other_texts[start: end]
fold_labels = labels + other_labels[start: end]
start = end
else:
fold_texts = texts
fold_labels = labels
assert batch_size == len(fold_labels)
# shuffle
index = list(range(batch_size))
np.random.shuffle(index)
shuffle_fold_texts = []
shuffle_fold_labels = []
for i in index:
shuffle_fold_texts.append(fold_texts[i])
shuffle_fold_labels.append(fold_labels[i])
data = {'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
fold_data.append(data)
logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))
return fold_data
fold_data = all_data2fold(10)
# build train, dev, test data
fold_id = 9
# dev
dev_data = fold_data[fold_id]
# train
train_texts = []
train_labels = []
for i in range(0, fold_id):
data = fold_data[i]
train_texts.extend(data['text'])
train_labels.extend(data['label'])
train_data = {'label': train_labels, 'text': train_texts}
# test
test_data_file = '../data/test_a.csv'
f = pd.read_csv(test_data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()
test_data = {'label': [0] * len(texts), 'text': texts}
# build vocab
from collections import Counter
from transformers import BasicTokenizer
basic_tokenizer = BasicTokenizer()
class Vocab():
def __init__(self, train_data):
self.min_count = 5
self.pad = 0
self.unk = 1
self._id2word = ['[PAD]', '[UNK]']
self._id2extword = ['[PAD]', '[UNK]']
self._id2label = []
self.target_names = []
self.build_vocab(train_data)
reverse = lambda x: dict(zip(x, range(len(x))))
self._word2id = reverse(self._id2word)
self._label2id = reverse(self._id2label)
logging.info("Build vocab: words %d, labels %d." % (self.word_size, self.label_size))
def build_vocab(self, data):
self.word_counter = Counter()
for text in data['text']:
words = text.split()
for word in words:
self.word_counter[word] += 1
for word, count in self.word_counter.most_common():
if count >= self.min_count:
self._id2word.append(word)
label2name = {0: '科技', 1: '股票', 2: '体育', 3: '娱乐', 4: '时政', 5: '社会', 6: '教育', 7: '财经',
8: '家居', 9: '游戏', 10: '房产', 11: '时尚', 12: '彩票', 13: '星座'}
self.label_counter = Counter(data['label'])
for label in range(len(self.label_counter)):
count = self.label_counter[label]
self._id2label.append(label)
self.target_names.append(label2name[label])
def load_pretrained_embs(self, embfile):
with open(embfile, encoding='utf-8') as f:
lines = f.readlines()
items = lines[0].split()
word_count, embedding_dim = int(items[0]), int(items[1])
index = len(self._id2extword)
embeddings = np.zeros((word_count + index, embedding_dim))
for line in lines[1:]:
values = line.split()
self._id2extword.append(values[0])
vector = np.array(values[1:], dtype='float64')
embeddings[self.unk] += vector
embeddings[index] = vector
index += 1
embeddings[self.unk] = embeddings[self.unk] / word_count
embeddings = embeddings / np.std(embeddings)
reverse = lambda x: dict(zip(x, range(len(x))))
self._extword2id = reverse(self._id2extword)
assert len(set(self._id2extword)) == len(self._id2extword)
return embeddings
def word2id(self, xs):
if isinstance(xs, list):
return [self._word2id.get(x, self.unk) for x in xs]
return self._word2id.get(xs, self.unk)
def extword2id(self, xs):
if isinstance(xs, list):
return [self._extword2id.get(x, self.unk) for x in xs]
return self._extword2id.get(xs, self.unk)
def label2id(self, xs):
if isinstance(xs, list):
return [self._label2id.get(x, self.unk) for x in xs]
return self._label2id.get(xs, self.unk)
@property
def word_size(self):
return len(self._id2word)
@property
def extword_size(self):
return len(self._id2extword)
@property
def label_size(self):
return len(self._id2label)
vocab = Vocab(train_data)
# build module
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, hidden_size):
super(Attention, self).__init__()
self.weight = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.weight.data.normal_(mean=0.0, std=0.05)
self.bias = nn.Parameter(torch.Tensor(hidden_size))
b = np.zeros(hidden_size, dtype=np.float32)
self.bias.data.copy_(torch.from_numpy(b))
self.query = nn.Parameter(torch.Tensor(hidden_size))
self.query.data.normal_(mean=0.0, std=0.05)
def forward(self, batch_hidden, batch_masks):
# batch_hidden: b x len x hidden_size (2 * hidden_size of lstm)
# batch_masks: b x len
# linear
key = torch.matmul(batch_hidden, self.weight) + self.bias # b x len x hidden
# compute attention
outputs = torch.matmul(key, self.query) # b x len
masked_outputs = outputs.masked_fill((1 - batch_masks).bool(), float(-1e32))
attn_scores = F.softmax(masked_outputs, dim=1) # b x len
# 对于全零向量,-1e32的结果为 1/len, -inf为nan, 额外补0
masked_attn_scores = attn_scores.masked_fill((1 - batch_masks).bool(), 0.0)
# sum weighted sources
batch_outputs = torch.bmm(masked_attn_scores.unsqueeze(1), key).squeeze(1) # b x hidden
return batch_outputs, attn_scores
# build word encoder
word2vec_path = '../emb/word2vec.txt'
dropout = 0.15
class WordCNNEncoder(nn.Module):
def __init__(self, vocab):
super(WordCNNEncoder, self).__init__()
self.dropout = nn.Dropout(dropout)
self.word_dims = 100
self.word_embed = nn.Embedding(vocab.word_size, self.word_dims, padding_idx=0)
extword_embed = vocab.load_pretrained_embs(word2vec_path)
extword_size, word_dims = extword_embed.shape
logging.info("Load extword embed: words %d, dims %d." % (extword_size, word_dims))
self.extword_embed = nn.Embedding(extword_size, word_dims, padding_idx=0)
self.extword_embed.weight.data.copy_(torch.from_numpy(extword_embed))
self.extword_embed.weight.requires_grad = False
input_size = self.word_dims
self.filter_sizes = [2, 3, 4] # n-gram window
self.out_channel = 100
self.convs = nn.ModuleList([nn.Conv2d(1, self.out_channel, (filter_size, input_size), bias=True)
for filter_size in self.filter_sizes])
def forward(self, word_ids, extword_ids):
# word_ids: sen_num x sent_len
# extword_ids: sen_num x sent_len
# batch_masks: sen_num x sent_len
sen_num, sent_len = word_ids.shape
word_embed = self.word_embed(word_ids) # sen_num x sent_len x 100
extword_embed = self.extword_embed(extword_ids)
batch_embed = word_embed + extword_embed
if self.training:
batch_embed = self.dropout(batch_embed)
batch_embed.unsqueeze_(1) # sen_num x 1 x sent_len x 100
pooled_outputs = []
for i in range(len(self.filter_sizes)):
filter_height = sent_len - self.filter_sizes[i] + 1
conv = self.convs[i](batch_embed)
hidden = F.relu(conv) # sen_num x out_channel x filter_height x 1
mp = nn.MaxPool2d((filter_height, 1)) # (filter_height, filter_width)
pooled = mp(hidden).reshape(sen_num,
self.out_channel) # sen_num x out_channel x 1 x 1 -> sen_num x out_channel
pooled_outputs.append(pooled)
reps = torch.cat(pooled_outputs, dim=1) # sen_num x total_out_channel
if self.training:
reps = self.dropout(reps)
return reps
# build sent encoder
sent_hidden_size = 256
sent_num_layers = 2
class SentEncoder(nn.Module):
def __init__(self, sent_rep_size):
super(SentEncoder, self).__init__()
self.dropout = nn.Dropout(dropout)
self.sent_lstm = nn.LSTM(
input_size=sent_rep_size,
hidden_size=sent_hidden_size,
num_layers=sent_num_layers,
batch_first=True,
bidirectional=True
)
def forward(self, sent_reps, sent_masks):
# sent_reps: b x doc_len x sent_rep_size
# sent_masks: b x doc_len
sent_hiddens, _ = self.sent_lstm(sent_reps) # b x doc_len x hidden*2
sent_hiddens = sent_hiddens * sent_masks.unsqueeze(2)
if self.training:
sent_hiddens = self.dropout(sent_hiddens)
return sent_hiddens
# build model
class Model(nn.Module):
def __init__(self, vocab):
super(Model, self).__init__()
self.sent_rep_size = 300
self.doc_rep_size = sent_hidden_size * 2
self.all_parameters = {}
parameters = []
self.word_encoder = WordCNNEncoder(vocab)
parameters.extend(list(filter(lambda p: p.requires_grad, self.word_encoder.parameters())))
self.sent_encoder = SentEncoder(self.sent_rep_size)
self.sent_attention = Attention(self.doc_rep_size)
parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_encoder.parameters())))
parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_attention.parameters())))
self.out = nn.Linear(self.doc_rep_size, vocab.label_size, bias=True)
parameters.extend(list(filter(lambda p: p.requires_grad, self.out.parameters())))
if use_cuda:
self.to(device)
if len(parameters) > 0:
self.all_parameters["basic_parameters"] = parameters
logging.info('Build model with cnn word encoder, lstm sent encoder.')
para_num = sum([np.prod(list(p.size())) for p in self.parameters()])
logging.info('Model param num: %.2f M.' % (para_num / 1e6))
def forward(self, batch_inputs):
# batch_inputs(batch_inputs1, batch_inputs2): b x doc_len x sent_len
# batch_masks : b x doc_len x sent_len
batch_inputs1, batch_inputs2, batch_masks = batch_inputs
batch_size, max_doc_len, max_sent_len = batch_inputs1.shape[0], batch_inputs1.shape[1], batch_inputs1.shape[2]
batch_inputs1 = batch_inputs1.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_inputs2 = batch_inputs2.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_masks = batch_masks.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
sent_reps = self.word_encoder(batch_inputs1, batch_inputs2) # sen_num x sent_rep_size
sent_reps = sent_reps.view(batch_size, max_doc_len, self.sent_rep_size) # b x doc_len x sent_rep_size
batch_masks = batch_masks.view(batch_size, max_doc_len, max_sent_len) # b x doc_len x max_sent_len
sent_masks = batch_masks.bool().any(2).float() # b x doc_len
sent_hiddens = self.sent_encoder(sent_reps, sent_masks) # b x doc_len x doc_rep_size
doc_reps, atten_scores = self.sent_attention(sent_hiddens, sent_masks) # b x doc_rep_size
batch_outputs = self.out(doc_reps) # b x num_labels
return batch_outputs
model = Model(vocab)
# build optimizer
learning_rate = 2e-4
decay = .75
decay_step = 1000
class Optimizer:
def __init__(self, model_parameters):
self.all_params = []
self.optims = []
self.schedulers = []
for name, parameters in model_parameters.items():
if name.startswith("basic"):
optim = torch.optim.Adam(parameters, lr=learning_rate)
self.optims.append(optim)
l = lambda step: decay ** (step // decay_step)
scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=l)
self.schedulers.append(scheduler)
self.all_params.extend(parameters)
else:
Exception("no nameed parameters.")
self.num = len(self.optims)
def step(self):
for optim, scheduler in zip(self.optims, self.schedulers):
optim.step()
scheduler.step()
optim.zero_grad()
def zero_grad(self):
for optim in self.optims:
optim.zero_grad()
def get_lr(self):
lrs = tuple(map(lambda x: x.get_lr()[-1], self.schedulers))
lr = ' %.5f' * self.num
res = lr % lrs
return res
# build dataset
def sentence_split(text, vocab, max_sent_len=256, max_segment=16):
words = text.strip().split()
document_len = len(words)
index = list(range(0, document_len, max_sent_len))
index.append(document_len)
segments = []
for i in range(len(index) - 1):
segment = words[index[i]: index[i + 1]]
assert len(segment) > 0
segment = [word if word in vocab._id2word else '' for word in segment]
segments.append([len(segment), segment])
assert len(segments) > 0
if len(segments) > max_segment:
segment_ = int(max_segment / 2)
return segments[:segment_] + segments[-segment_:]
else:
return segments
def get_examples(data, vocab, max_sent_len=256, max_segment=8):
label2id = vocab.label2id
examples = []
for text, label in zip(data['text'], data['label']):
# label
id = label2id(label)
# words
sents_words = sentence_split(text, vocab, max_sent_len, max_segment)
doc = []
for sent_len, sent_words in sents_words:
word_ids = vocab.word2id(sent_words)
extword_ids = vocab.extword2id(sent_words)
doc.append([sent_len, word_ids, extword_ids])
examples.append([id, len(doc), doc])
logging.info('Total %d docs.' % len(examples))
return examples
# build loader
def batch_slice(data, batch_size):
batch_num = int(np.ceil(len(data) / float(batch_size)))
for i in range(batch_num):
cur_batch_size = batch_size if i < batch_num - 1 else len(data) - batch_size * i
docs = [data[i * batch_size + b] for b in range(cur_batch_size)]
yield docs
def data_iter(data, batch_size, shuffle=True, noise=1.0):
"""
randomly permute data, then sort by source length, and partition into batches
ensure that the length of sentences in each batch
"""
batched_data = []
if shuffle:
np.random.shuffle(data)
lengths = [example[1] for example in data]
noisy_lengths = [- (l + np.random.uniform(- noise, noise)) for l in lengths]
sorted_indices = np.argsort(noisy_lengths).tolist()
sorted_data = [data[i] for i in sorted_indices]
batched_data.extend(list(batch_slice(sorted_data, batch_size)))
if shuffle:
np.random.shuffle(batched_data)
for batch in batched_data:
yield batch
# some function
from sklearn.metrics import f1_score, precision_score, recall_score
def get_score(y_ture, y_pred):
y_ture = np.array(y_ture)
y_pred = np.array(y_pred)
f1 = f1_score(y_ture, y_pred, average='macro') * 100
p = precision_score(y_ture, y_pred, average='macro') * 100
r = recall_score(y_ture, y_pred, average='macro') * 100
return str((reformat(p, 2), reformat(r, 2), reformat(f1, 2))), reformat(f1, 2)
def reformat(num, n):
return float(format(num, '0.' + str(n) + 'f'))
# build trainer
import time
from sklearn.metrics import classification_report
clip = 5.0
epochs = 1
early_stops = 3
log_interval = 50
test_batch_size = 128
train_batch_size = 128
save_model = './cnn.bin'
save_test = './cnn.csv'
class Trainer():
def __init__(self, model, vocab):
self.model = model
self.report = True
self.train_data = get_examples(train_data, vocab)
self.batch_num = int(np.ceil(len(self.train_data) / float(train_batch_size)))
self.dev_data = get_examples(dev_data, vocab)
# criterion
self.criterion = nn.CrossEntropyLoss()
# label name
self.target_names = vocab.target_names
# optimizer
self.optimizer = Optimizer(model.all_parameters)
# count
self.step = 0
self.early_stop = -1
self.best_train_f1, self.best_dev_f1 = 0, 0
self.last_epoch = epochs
def train(self):
logging.info('Start training...')
for epoch in range(1, epochs + 1):
train_f1 = self._train(epoch)
dev_f1 = self._eval(epoch)
if self.best_dev_f1 <= dev_f1:
logging.info(
"Exceed history dev = %.2f, current dev = %.2f" % (self.best_dev_f1, dev_f1))
torch.save(self.model.state_dict(), save_model)
self.best_train_f1 = train_f1
self.best_dev_f1 = dev_f1
self.early_stop = 0
else:
self.early_stop += 1
if self.early_stop == early_stops:
logging.info(
"Eearly stop in epoch %d, best train: %.2f, dev: %.2f" % (
epoch - early_stops, self.best_train_f1, self.best_dev_f1))
self.last_epoch = epoch
break
def test(self):
self.model.load_state_dict(torch.load(save_model))
self._eval(self.last_epoch + 1, test=True)
def _train(self, epoch):
self.optimizer.zero_grad()
self.model.train()
start_time = time.time()
epoch_start_time = time.time()
overall_losses = 0
losses = 0
batch_idx = 1
y_pred = []
y_true = []
for batch_data in data_iter(self.train_data, train_batch_size, shuffle=True):
torch.cuda.empty_cache()
batch_inputs, batch_labels = self.batch2tensor(batch_data)
batch_outputs = self.model(batch_inputs)
loss = self.criterion(batch_outputs, batch_labels)
loss.backward()
loss_value = loss.detach().cpu().item()
losses += loss_value
overall_losses += loss_value
y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
y_true.extend(batch_labels.cpu().numpy().tolist())
nn.utils.clip_grad_norm_(self.optimizer.all_params, max_norm=clip)
for optimizer, scheduler in zip(self.optimizer.optims, self.optimizer.schedulers):
optimizer.step()
scheduler.step()
self.optimizer.zero_grad()
self.step += 1
if batch_idx % log_interval == 0:
elapsed = time.time() - start_time
lrs = self.optimizer.get_lr()
logging.info(
'| epoch {:3d} | step {:3d} | batch {:3d}/{:3d} | lr{} | loss {:.4f} | s/batch {:.2f}'.format(
epoch, self.step, batch_idx, self.batch_num, lrs,
losses / log_interval,
elapsed / log_interval))
losses = 0
start_time = time.time()
batch_idx += 1
overall_losses /= self.batch_num
during_time = time.time() - epoch_start_time
# reformat
overall_losses = reformat(overall_losses, 4)
score, f1 = get_score(y_true, y_pred)
logging.info(
'| epoch {:3d} | score {} | f1 {} | loss {:.4f} | time {:.2f}'.format(epoch, score, f1,
overall_losses,
during_time))
if set(y_true) == set(y_pred) and self.report:
report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
logging.info('\n' + report)
return f1
def _eval(self, epoch, test=False):
self.model.eval()
start_time = time.time()
data = self.test_data if test else self.dev_data
y_pred = []
y_true = []
with torch.no_grad():
for batch_data in data_iter(data, test_batch_size, shuffle=False):
torch.cuda.empty_cache()
batch_inputs, batch_labels = self.batch2tensor(batch_data)
batch_outputs = self.model(batch_inputs)
y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
y_true.extend(batch_labels.cpu().numpy().tolist())
score, f1 = get_score(y_true, y_pred)
during_time = time.time() - start_time
if test:
df = pd.DataFrame({'label': y_pred})
df.to_csv(save_test, index=False, sep=',')
else:
logging.info(
'| epoch {:3d} | dev | score {} | f1 {} | time {:.2f}'.format(epoch, score, f1,
during_time))
if set(y_true) == set(y_pred) and self.report:
report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
logging.info('\n' + report)
return f1
def batch2tensor(self, batch_data):
'''
[[label, doc_len, [[sent_len, [sent_id0, ...], [sent_id1, ...]], ...]]
'''
batch_size = len(batch_data)
doc_labels = []
doc_lens = []
doc_max_sent_len = []
for doc_data in batch_data:
doc_labels.append(doc_data[0])
doc_lens.append(doc_data[1])
sent_lens = [sent_data[0] for sent_data in doc_data[2]]
max_sent_len = max(sent_lens)
doc_max_sent_len.append(max_sent_len)
max_doc_len = max(doc_lens)
max_sent_len = max(doc_max_sent_len)
batch_inputs1 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
batch_inputs2 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
batch_masks = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.float32)
batch_labels = torch.LongTensor(doc_labels)
for b in range(batch_size):
for sent_idx in range(doc_lens[b]):
sent_data = batch_data[b][2][sent_idx]
for word_idx in range(sent_data[0]):
batch_inputs1[b, sent_idx, word_idx] = sent_data[1][word_idx]
batch_inputs2[b, sent_idx, word_idx] = sent_data[2][word_idx]
batch_masks[b, sent_idx, word_idx] = 1
if use_cuda:
batch_inputs1 = batch_inputs1.to(device)
batch_inputs2 = batch_inputs2.to(device)
batch_masks = batch_masks.to(device)
batch_labels = batch_labels.to(device)
return (batch_inputs1, batch_inputs2, batch_masks), batch_labels
# train
trainer = Trainer(model, vocab)
trainer.train()
# test
trainer.test()
TextRNN利用RNN(循环神经网络)进行文本特征抽取,由于文本本身是一种序列,而LSTM天然适合建模序列数据。TextRNN将句子中每个词的词向量依次输入到双向双层LSTM,分别将两个方向最后一个有效位置的隐藏层拼接成一个向量作为文本的表示。
import logging
import random
import numpy as np
import torch
logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')
# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
# set cuda
gpu = 0
use_cuda = gpu >= 0 and torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(gpu)
device = torch.device("cuda", gpu)
else:
device = torch.device("cpu")
logging.info("Use cuda: %s, gpu id: %d.", use_cuda, gpu)
# split data to 10 fold
fold_num = 10
data_file = '../data/train_set.csv'
import pandas as pd
def all_data2fold(fold_num, num=10000):
fold_data = []
f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()[:num]
labels = f['label'].tolist()[:num]
total = len(labels)
index = list(range(total))
np.random.shuffle(index)
all_texts = []
all_labels = []
for i in index:
all_texts.append(texts[i])
all_labels.append(labels[i])
label2id = {}
for i in range(total):
label = str(all_labels[i])
if label not in label2id:
label2id[label] = [i]
else:
label2id[label].append(i)
all_index = [[] for _ in range(fold_num)]
for label, data in label2id.items():
# print(label, len(data))
batch_size = int(len(data) / fold_num)
other = len(data) - batch_size * fold_num
for i in range(fold_num):
cur_batch_size = batch_size + 1 if i < other else batch_size
# print(cur_batch_size)
batch_data = [data[i * batch_size + b] for b in range(cur_batch_size)]
all_index[i].extend(batch_data)
batch_size = int(total / fold_num)
other_texts = []
other_labels = []
other_num = 0
start = 0
for fold in range(fold_num):
num = len(all_index[fold])
texts = [all_texts[i] for i in all_index[fold]]
labels = [all_labels[i] for i in all_index[fold]]
if num > batch_size:
fold_texts = texts[:batch_size]
other_texts.extend(texts[batch_size:])
fold_labels = labels[:batch_size]
other_labels.extend(labels[batch_size:])
other_num += num - batch_size
elif num < batch_size:
end = start + batch_size - num
fold_texts = texts + other_texts[start: end]
fold_labels = labels + other_labels[start: end]
start = end
else:
fold_texts = texts
fold_labels = labels
assert batch_size == len(fold_labels)
# shuffle
index = list(range(batch_size))
np.random.shuffle(index)
shuffle_fold_texts = []
shuffle_fold_labels = []
for i in index:
shuffle_fold_texts.append(fold_texts[i])
shuffle_fold_labels.append(fold_labels[i])
data = {'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
fold_data.append(data)
logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))
return fold_data
fold_data = all_data2fold(10)
# build train, dev, test data
fold_id = 9
# dev
dev_data = fold_data[fold_id]
# train
train_texts = []
train_labels = []
for i in range(0, fold_id):
data = fold_data[i]
train_texts.extend(data['text'])
train_labels.extend(data['label'])
train_data = {'label': train_labels, 'text': train_texts}
# test
test_data_file = '../data/test_a.csv'
f = pd.read_csv(test_data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()
test_data = {'label': [0] * len(texts), 'text': texts}
# build vocab
from collections import Counter
from transformers import BasicTokenizer
basic_tokenizer = BasicTokenizer()
class Vocab():
def __init__(self, train_data):
self.min_count = 5
self.pad = 0
self.unk = 1
self._id2word = ['[PAD]', '[UNK]']
self._id2extword = ['[PAD]', '[UNK]']
self._id2label = []
self.target_names = []
self.build_vocab(train_data)
reverse = lambda x: dict(zip(x, range(len(x))))
self._word2id = reverse(self._id2word)
self._label2id = reverse(self._id2label)
logging.info("Build vocab: words %d, labels %d." % (self.word_size, self.label_size))
def build_vocab(self, data):
self.word_counter = Counter()
for text in data['text']:
words = text.split()
for word in words:
self.word_counter[word] += 1
for word, count in self.word_counter.most_common():
if count >= self.min_count:
self._id2word.append(word)
label2name = {0: '科技', 1: '股票', 2: '体育', 3: '娱乐', 4: '时政', 5: '社会', 6: '教育', 7: '财经',
8: '家居', 9: '游戏', 10: '房产', 11: '时尚', 12: '彩票', 13: '星座'}
self.label_counter = Counter(data['label'])
for label in range(len(self.label_counter)):
count = self.label_counter[label]
self._id2label.append(label)
self.target_names.append(label2name[label])
def load_pretrained_embs(self, embfile):
with open(embfile, encoding='utf-8') as f:
lines = f.readlines()
items = lines[0].split()
word_count, embedding_dim = int(items[0]), int(items[1])
index = len(self._id2extword)
embeddings = np.zeros((word_count + index, embedding_dim))
for line in lines[1:]:
values = line.split()
self._id2extword.append(values[0])
vector = np.array(values[1:], dtype='float64')
embeddings[self.unk] += vector
embeddings[index] = vector
index += 1
embeddings[self.unk] = embeddings[self.unk] / word_count
embeddings = embeddings / np.std(embeddings)
reverse = lambda x: dict(zip(x, range(len(x))))
self._extword2id = reverse(self._id2extword)
assert len(set(self._id2extword)) == len(self._id2extword)
return embeddings
def word2id(self, xs):
if isinstance(xs, list):
return [self._word2id.get(x, self.unk) for x in xs]
return self._word2id.get(xs, self.unk)
def extword2id(self, xs):
if isinstance(xs, list):
return [self._extword2id.get(x, self.unk) for x in xs]
return self._extword2id.get(xs, self.unk)
def label2id(self, xs):
if isinstance(xs, list):
return [self._label2id.get(x, self.unk) for x in xs]
return self._label2id.get(xs, self.unk)
@property
def word_size(self):
return len(self._id2word)
@property
def extword_size(self):
return len(self._id2extword)
@property
def label_size(self):
return len(self._id2label)
vocab = Vocab(train_data)
# build module
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, hidden_size):
super(Attention, self).__init__()
self.weight = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
self.weight.data.normal_(mean=0.0, std=0.05)
self.bias = nn.Parameter(torch.Tensor(hidden_size))
b = np.zeros(hidden_size, dtype=np.float32)
self.bias.data.copy_(torch.from_numpy(b))
self.query = nn.Parameter(torch.Tensor(hidden_size))
self.query.data.normal_(mean=0.0, std=0.05)
def forward(self, batch_hidden, batch_masks):
# batch_hidden: b x len x hidden_size (2 * hidden_size of lstm)
# batch_masks: b x len
# linear
key = torch.matmul(batch_hidden, self.weight) + self.bias # b x len x hidden
# compute attention
outputs = torch.matmul(key, self.query) # b x len
masked_outputs = outputs.masked_fill((1 - batch_masks).bool(), float(-1e32))
attn_scores = F.softmax(masked_outputs, dim=1) # b x len
# 对于全零向量,-1e32的结果为 1/len, -inf为nan, 额外补0
masked_attn_scores = attn_scores.masked_fill((1 - batch_masks).bool(), 0.0)
# sum weighted sources
batch_outputs = torch.bmm(masked_attn_scores.unsqueeze(1), key).squeeze(1) # b x hidden
return batch_outputs, attn_scores
# build word encoder
word2vec_path = '../emb/word2vec.txt'
dropout = 0.15
word_hidden_size = 128
word_num_layers = 2
class WordLSTMEncoder(nn.Module):
def __init__(self, vocab):
super(WordLSTMEncoder, self).__init__()
self.dropout = nn.Dropout(dropout)
self.word_dims = 100
self.word_embed = nn.Embedding(vocab.word_size, self.word_dims, padding_idx=0)
extword_embed = vocab.load_pretrained_embs(word2vec_path)
extword_size, word_dims = extword_embed.shape
logging.info("Load extword embed: words %d, dims %d." % (extword_size, word_dims))
self.extword_embed = nn.Embedding(extword_size, word_dims, padding_idx=0)
self.extword_embed.weight.data.copy_(torch.from_numpy(extword_embed))
self.extword_embed.weight.requires_grad = False
input_size = self.word_dims
self.word_lstm = nn.LSTM(
input_size=input_size,
hidden_size=word_hidden_size,
num_layers=word_num_layers,
batch_first=True,
bidirectional=True
)
def forward(self, word_ids, extword_ids, batch_masks):
# word_ids: sen_num x sent_len
# extword_ids: sen_num x sent_len
# batch_masks sen_num x sent_len
word_embed = self.word_embed(word_ids) # sen_num x sent_len x 100
extword_embed = self.extword_embed(extword_ids)
batch_embed = word_embed + extword_embed
if self.training:
batch_embed = self.dropout(batch_embed)
hiddens, _ = self.word_lstm(batch_embed) # sen_num x sent_len x hidden*2
hiddens = hiddens * batch_masks.unsqueeze(2)
if self.training:
hiddens = self.dropout(hiddens)
return hiddens
# build sent encoder
sent_hidden_size = 256
sent_num_layers = 2
class SentEncoder(nn.Module):
def __init__(self, sent_rep_size):
super(SentEncoder, self).__init__()
self.dropout = nn.Dropout(dropout)
self.sent_lstm = nn.LSTM(
input_size=sent_rep_size,
hidden_size=sent_hidden_size,
num_layers=sent_num_layers,
batch_first=True,
bidirectional=True
)
def forward(self, sent_reps, sent_masks):
# sent_reps: b x doc_len x sent_rep_size
# sent_masks: b x doc_len
sent_hiddens, _ = self.sent_lstm(sent_reps) # b x doc_len x hidden*2
sent_hiddens = sent_hiddens * sent_masks.unsqueeze(2)
if self.training:
sent_hiddens = self.dropout(sent_hiddens)
return sent_hiddens
# build model
class Model(nn.Module):
def __init__(self, vocab):
super(Model, self).__init__()
self.sent_rep_size = word_hidden_size * 2
self.doc_rep_size = sent_hidden_size * 2
self.all_parameters = {}
parameters = []
self.word_encoder = WordLSTMEncoder(vocab)
self.word_attention = Attention(self.sent_rep_size)
parameters.extend(list(filter(lambda p: p.requires_grad, self.word_encoder.parameters())))
parameters.extend(list(filter(lambda p: p.requires_grad, self.word_attention.parameters())))
self.sent_encoder = SentEncoder(self.sent_rep_size)
self.sent_attention = Attention(self.doc_rep_size)
parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_encoder.parameters())))
parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_attention.parameters())))
self.out = nn.Linear(self.doc_rep_size, vocab.label_size, bias=True)
parameters.extend(list(filter(lambda p: p.requires_grad, self.out.parameters())))
if use_cuda:
self.to(device)
if len(parameters) > 0:
self.all_parameters["basic_parameters"] = parameters
logging.info('Build model with lstm word encoder, lstm sent encoder.')
para_num = sum([np.prod(list(p.size())) for p in self.parameters()])
logging.info('Model param num: %.2f M.' % (para_num / 1e6))
def forward(self, batch_inputs):
# batch_inputs(batch_inputs1, batch_inputs2): b x doc_len x sent_len
# batch_masks : b x doc_len x sent_len
batch_inputs1, batch_inputs2, batch_masks = batch_inputs
batch_size, max_doc_len, max_sent_len = batch_inputs1.shape[0], batch_inputs1.shape[1], batch_inputs1.shape[2]
batch_inputs1 = batch_inputs1.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_inputs2 = batch_inputs2.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_masks = batch_masks.view(batch_size * max_doc_len, max_sent_len) # sen_num x sent_len
batch_hiddens = self.word_encoder(batch_inputs1, batch_inputs2,
batch_masks) # sen_num x sent_len x sent_rep_size
sent_reps, atten_scores = self.word_attention(batch_hiddens, batch_masks) # sen_num x sent_rep_size
sent_reps = sent_reps.view(batch_size, max_doc_len, self.sent_rep_size) # b x doc_len x sent_rep_size
batch_masks = batch_masks.view(batch_size, max_doc_len, max_sent_len) # b x doc_len x max_sent_len
sent_masks = batch_masks.bool().any(2).float() # b x doc_len
sent_hiddens = self.sent_encoder(sent_reps, sent_masks) # b x doc_len x doc_rep_size
doc_reps, atten_scores = self.sent_attention(sent_hiddens, sent_masks) # b x doc_rep_size
batch_outputs = self.out(doc_reps) # b x num_labels
return batch_outputs
model = Model(vocab)
# build optimizer
learning_rate = 2e-4
decay = .75
decay_step = 1000
class Optimizer:
def __init__(self, model_parameters):
self.all_params = []
self.optims = []
self.schedulers = []
for name, parameters in model_parameters.items():
if name.startswith("basic"):
optim = torch.optim.Adam(parameters, lr=learning_rate)
self.optims.append(optim)
l = lambda step: decay ** (step // decay_step)
scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=l)
self.schedulers.append(scheduler)
self.all_params.extend(parameters)
else:
Exception("no nameed parameters.")
self.num = len(self.optims)
def step(self):
for optim, scheduler in zip(self.optims, self.schedulers):
optim.step()
scheduler.step()
optim.zero_grad()
def zero_grad(self):
for optim in self.optims:
optim.zero_grad()
def get_lr(self):
lrs = tuple(map(lambda x: x.get_lr()[-1], self.schedulers))
lr = ' %.5f' * self.num
res = lr % lrs
return res
# build dataset
def sentence_split(text, vocab, max_sent_len=256, max_segment=16):
words = text.strip().split()
document_len = len(words)
index = list(range(0, document_len, max_sent_len))
index.append(document_len)
segments = []
for i in range(len(index) - 1):
segment = words[index[i]: index[i + 1]]
assert len(segment) > 0
segment = [word if word in vocab._id2word else '' for word in segment]
segments.append([len(segment), segment])
assert len(segments) > 0
if len(segments) > max_segment:
segment_ = int(max_segment / 2)
return segments[:segment_] + segments[-segment_:]
else:
return segments
def get_examples(data, vocab, max_sent_len=256, max_segment=8):
label2id = vocab.label2id
examples = []
for text, label in zip(data['text'], data['label']):
# label
id = label2id(label)
# words
sents_words = sentence_split(text, vocab, max_sent_len, max_segment)
doc = []
for sent_len, sent_words in sents_words:
word_ids = vocab.word2id(sent_words)
extword_ids = vocab.extword2id(sent_words)
doc.append([sent_len, word_ids, extword_ids])
examples.append([id, len(doc), doc])
logging.info('Total %d docs.' % len(examples))
return examples
# build loader
def batch_slice(data, batch_size):
batch_num = int(np.ceil(len(data) / float(batch_size)))
for i in range(batch_num):
cur_batch_size = batch_size if i < batch_num - 1 else len(data) - batch_size * i
docs = [data[i * batch_size + b] for b in range(cur_batch_size)]
yield docs
def data_iter(data, batch_size, shuffle=True, noise=1.0):
"""
randomly permute data, then sort by source length, and partition into batches
ensure that the length of sentences in each batch
"""
batched_data = []
if shuffle:
np.random.shuffle(data)
lengths = [example[1] for example in data]
noisy_lengths = [- (l + np.random.uniform(- noise, noise)) for l in lengths]
sorted_indices = np.argsort(noisy_lengths).tolist()
sorted_data = [data[i] for i in sorted_indices]
batched_data.extend(list(batch_slice(sorted_data, batch_size)))
if shuffle:
np.random.shuffle(batched_data)
for batch in batched_data:
yield batch
# some function
from sklearn.metrics import f1_score, precision_score, recall_score
def get_score(y_ture, y_pred):
y_ture = np.array(y_ture)
y_pred = np.array(y_pred)
f1 = f1_score(y_ture, y_pred, average='macro') * 100
p = precision_score(y_ture, y_pred, average='macro') * 100
r = recall_score(y_ture, y_pred, average='macro') * 100
return str((reformat(p, 2), reformat(r, 2), reformat(f1, 2))), reformat(f1, 2)
def reformat(num, n):
return float(format(num, '0.' + str(n) + 'f'))
# build trainer
import time
from sklearn.metrics import classification_report
clip = 5.0
epochs = 1
early_stops = 3
log_interval = 200
test_batch_size = 16
train_batch_size = 16
save_model = './rnn.bin'
save_test = './rnn.csv'
class Trainer():
def __init__(self, model, vocab):
self.model = model
self.report = True
self.train_data = get_examples(train_data, vocab)
self.batch_num = int(np.ceil(len(self.train_data) / float(train_batch_size)))
self.dev_data = get_examples(dev_data, vocab)
self.test_data = get_examples(test_data, vocab)
# criterion
self.criterion = nn.CrossEntropyLoss()
# label name
self.target_names = vocab.target_names
# optimizer
self.optimizer = Optimizer(model.all_parameters)
# count
self.step = 0
self.early_stop = -1
self.best_train_f1, self.best_dev_f1 = 0, 0
self.last_epoch = epochs
def train(self):
logging.info('Start training...')
for epoch in range(1, epochs + 1):
train_f1 = self._train(epoch)
dev_f1 = self._eval(epoch)
if self.best_dev_f1 <= dev_f1:
logging.info(
"Exceed history dev = %.2f, current dev = %.2f" % (self.best_dev_f1, dev_f1))
torch.save(self.model.state_dict(), save_model)
self.best_train_f1 = train_f1
self.best_dev_f1 = dev_f1
self.early_stop = 0
else:
self.early_stop += 1
if self.early_stop == early_stops:
logging.info(
"Eearly stop in epoch %d, best train: %.2f, dev: %.2f" % (
epoch - early_stops, self.best_train_f1, self.best_dev_f1))
self.last_epoch = epoch
break
def test(self):
self.model.load_state_dict(torch.load(save_model))
self._eval(self.last_epoch + 1, test=True)
def _train(self, epoch):
self.optimizer.zero_grad()
self.model.train()
start_time = time.time()
epoch_start_time = time.time()
overall_losses = 0
losses = 0
batch_idx = 1
y_pred = []
y_true = []
for batch_data in data_iter(self.train_data, train_batch_size, shuffle=True):
torch.cuda.empty_cache()
batch_inputs, batch_labels = self.batch2tensor(batch_data)
batch_outputs = self.model(batch_inputs)
loss = self.criterion(batch_outputs, batch_labels)
loss.backward()
loss_value = loss.detach().cpu().item()
losses += loss_value
overall_losses += loss_value
y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
y_true.extend(batch_labels.cpu().numpy().tolist())
nn.utils.clip_grad_norm_(self.optimizer.all_params, max_norm=clip)
for optimizer, scheduler in zip(self.optimizer.optims, self.optimizer.schedulers):
optimizer.step()
scheduler.step()
self.optimizer.zero_grad()
self.step += 1
if batch_idx % log_interval == 0:
elapsed = time.time() - start_time
lrs = self.optimizer.get_lr()
logging.info(
'| epoch {:3d} | step {:3d} | batch {:3d}/{:3d} | lr{} | loss {:.4f} | s/batch {:.2f}'.format(
epoch, self.step, batch_idx, self.batch_num, lrs,
losses / log_interval,
elapsed / log_interval))
losses = 0
start_time = time.time()
batch_idx += 1
overall_losses /= self.batch_num
during_time = time.time() - epoch_start_time
# reformat
overall_losses = reformat(overall_losses, 4)
score, f1 = get_score(y_true, y_pred)
logging.info(
'| epoch {:3d} | score {} | f1 {} | loss {:.4f} | time {:.2f}'.format(epoch, score, f1,
overall_losses,
during_time))
if set(y_true) == set(y_pred) and self.report:
report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
logging.info('\n' + report)
return f1
def _eval(self, epoch, test=False):
self.model.eval()
start_time = time.time()
data = self.test_data if test else self.dev_data
y_pred = []
y_true = []
with torch.no_grad():
for batch_data in data_iter(data, test_batch_size, shuffle=False):
torch.cuda.empty_cache()
batch_inputs, batch_labels = self.batch2tensor(batch_data)
batch_outputs = self.model(batch_inputs)
y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
y_true.extend(batch_labels.cpu().numpy().tolist())
score, f1 = get_score(y_true, y_pred)
during_time = time.time() - start_time
if test:
df = pd.DataFrame({'label': y_pred})
df.to_csv(save_test, index=False, sep=',')
else:
logging.info(
'| epoch {:3d} | dev | score {} | f1 {} | time {:.2f}'.format(epoch, score, f1,
during_time))
if set(y_true) == set(y_pred) and self.report:
report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
logging.info('\n' + report)
return f1
def batch2tensor(self, batch_data):
'''
[[label, doc_len, [[sent_len, [sent_id0, ...], [sent_id1, ...]], ...]]
'''
batch_size = len(batch_data)
doc_labels = []
doc_lens = []
doc_max_sent_len = []
for doc_data in batch_data:
doc_labels.append(doc_data[0])
doc_lens.append(doc_data[1])
sent_lens = [sent_data[0] for sent_data in doc_data[2]]
max_sent_len = max(sent_lens)
doc_max_sent_len.append(max_sent_len)
max_doc_len = max(doc_lens)
max_sent_len = max(doc_max_sent_len)
batch_inputs1 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
batch_inputs2 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
batch_masks = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.float32)
batch_labels = torch.LongTensor(doc_labels)
for b in range(batch_size):
for sent_idx in range(doc_lens[b]):
sent_data = batch_data[b][2][sent_idx]
for word_idx in range(sent_data[0]):
batch_inputs1[b, sent_idx, word_idx] = sent_data[1][word_idx]
batch_inputs2[b, sent_idx, word_idx] = sent_data[2][word_idx]
batch_masks[b, sent_idx, word_idx] = 1
if use_cuda:
batch_inputs1 = batch_inputs1.to(device)
batch_inputs2 = batch_inputs2.to(device)
batch_masks = batch_masks.to(device)
batch_labels = batch_labels.to(device)
return (batch_inputs1, batch_inputs2, batch_masks), batch_labels
# train
trainer = Trainer(model, vocab)
trainer.train()
# test
trainer.test()