有了之前进制转换和字符串的坑这次写起来挺顺的233
先贴一下模重复平方法的数学实现,一个很明显的递推。
如果说哪里要注意一下大概是最后的边界吧,判断是否到达二进制数的末尾,用len(n)来返回长度判断。第一次用了if i!=n[-1] 显然有问题,因为n这个字符串不是0就是1
实现代码:
def test(m, n, e):
n = bin(int(n))
n = n.replace('0b', '')
n = n[::-1]
a = [1]
b = [int(e)]
m = int(m)
cum = 0
for i in n:
if int(i) > 0:
a.append(a[cum]*b[cum] % m)
else:
a.append(a[cum] % m)
if cum < len(n):
b.append(b[cum] * b[cum] % m)
cum = cum + 1
print(a[cum])
m =input("请输入模数m: ")
b =input("请输入幂: ")
a =input("请输入底数: ")
test(m, b, a)
至于RSA,按照步骤来就好了,根据扩展欧几里得和刚刚的模重复平方。
def ex_gcd(a, b):
s = [0, 1, 0]
t = [0, 0, 1]
r = [a, b]
r.append(r[0] % r[1])
q = [0, 0, r[0] // r[1]]
n = 3
while 1:
q.append(r[n - 2] // r[n - 1])
r.append(r[n - 2] % r[n - 1])
s.append(s[n - 2] - (q[n - 1] * s[n - 1]))
t.append(t[n - 2] - (q[n - 1] * t[n - 1]))
if r[n] == 0:
break
n = n + 1
return s[n]
def test(m, n, e):
n = bin(int(n))
n = n.replace('0b', '')
n = n[::-1]
a = [1]
b = [int(e)]
m = int(m)
cum = 0
for i in n:
if int(i) > 0:
a.append(a[cum]*b[cum] % m)
else:
a.append(a[cum] % m)
if cum < len(n):
b.append(b[cum] * b[cum] % m)
cum = cum + 1
return a[cum]
def RSA(p, q, e):
fn = (p - 1) * (q - 1)
d = ex_gcd(e, fn) % fn
n = p*q
print('φ(n)='+str(fn)+' n='+str(n))
print("Ke=(n, e) = ("+str(n)+','+str(e)+')')
print("Kd=(n, d) = (" + str(n) + ',' + str(d) + ')')
a = int(input('请输入密文的编码: '))
print("Ke=(n, e) = ("+str(n)+','+str(e)+')'+'加密编码'+str(a)+'得:')
# c=(“de”) e (mod n)= 827(mod 143);
c = test(n, e, a)
print('得到密文:'+str(c))
#解密部分
c = input("需要解密的密文: ")
e = test(n, d, c)
print("解密得到明文:"+str(e))
print('这里是模重复平方法: ')
m = input("请输入模数m: ")
b = input("请输入幂: ")
a = input("请输入底数: ")
x = test(m, b, a)
print(x)
print("这里是RSA公钥秘钥算法: ")
p = int(input("请输入第一个大整数p: "))
q = int(input("请输入第二个大整数q: "))
e = int(input("请输入公钥e: "))
RSA(p, q, e)