- 不搞花里胡哨!CMU最新开源:极简风格的LiDAR全景分割+跟踪!
3D视觉工坊
3D视觉从入门到精通3D视觉
来源:3D视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf、代码链接添加微信:dddvisiona,备注:三维点云,拉你入群。文末附行业细分群1.笔者个人体会激光雷达全景分割(LPS)一般遵循自下而上的以分割为中心的范式,利用聚类获得对象实例来建立语义分割网络。但是最近CMU&Meta等大佬们重新思考了这种方法,并提出了一个简单而有效的检测中心网络,用于LPS和跟踪。这项工作也
- u-net系列算法
㡽闧㔯
人工智能算法
语义分割M整体结构:M概述就是编码解码过程简单但是很实用,应用广起初是做医学方向,现在也是U-net主要网络结构:还引入了特征拼接操作M以前我们都是加法,现在全都要这么简单的结构就能把分割任务做好U-net++整体网络结构:特征融合,拼接更全面其实跟densenet思想一致把能拼能凑的特征全用上就是升级版了U-net++DeepSupervision:也是很常见的事,多输出损失由多个位置计算,再更
- DeepLabv3+改进18:在主干网络中添加REP_BLOCK
AICurator
深度学习python机器学习deeplabv3+语义分割
【DeepLabv3+改进专栏!探索语义分割新高度】你是否在为图像分割的精度与效率发愁?本专栏重磅推出:✅独家改进策略:融合注意力机制、轻量化设计与多尺度优化✅即插即用模块:ASPP+升级、解码器PS:订阅专栏提供完整代码论文简介我们提出了一种通用的卷积神经网络(ConvNet)构建模块,可在不增加推理时间成本的情况下提升性能。该模块名为多样化分支块(DBB),通过结合不同尺度和复杂度的多样化分支
- 3DMAX点云算法:实现毫米级BIM模型偏差检测(附完整代码)
夏末之花
人工智能
摘要本文基于激光雷达点云数据与BIM模型的高精度对齐技术,提出一种融合动态体素化与多模态特征匹配的偏差检测方法。通过点云预处理、语义分割、模型配准及差异分析,最终实现建筑构件毫米级偏差的可视化检测。文中提供关键代码实现,涵盖点云处理、特征提取与深度学习模型搭建。一、核心算法流程点云预处理与特征增强去噪与下采样:采用统计滤波与体素网格下采样,去除离群点并降低数据量。语义分割:基于PointNet++
- 【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割
985小水博一枚呀
论文解读深度学习transformer人工智能网络cnn
【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割文章目录【深度学习遥感分割|论文解读2】UNetFormer:一种类UNet的Transformer,用于高效的遥感城市场景图像语义分割2.Re
- 3D-AFFORDANCELLM: HARNESSING LARGE LANGUAGE MODELS FOR OPEN-VOCABULARY AFFORDANCE DETECTION
UnknownBody
LLMDaily3d语言模型人工智能
摘要3D可及性检测是一个具有挑战性的问题,在各种机器人任务中有着广泛的应用。现有方法通常将检测范式制定为基于标签的语义分割任务。这种范式依赖于预定义的标签,缺乏理解复杂自然语言的能力,导致在开放世界场景中的泛化能力有限。为了解决这些限制,我们将传统的可及性检测范式重新定义为指令推理可及性分割(IRAS)任务。该任务旨在根据查询推理文本输出可及性掩码区域,避免了输入标签的固定类别。相应地,我们提出了
- A survey on instance segmentation: state of the art——论文笔记
栀子清茶
1024程序员节论文阅读计算机视觉人工智能笔记学习
摘要这篇论文综述了实例分割的研究进展,定义其为同时解决对象检测和语义分割的问题。论文讨论了实例分割的背景、面临的挑战、技术演变、常用数据集,并总结了相关领域的最新成果和未来研究方向。实例分割的发展从粗略的对象分类逐步演变为更精细的像素级别推理,广泛应用于自动驾驶、机器人等领域。论文为研究人员提供了对实例分割领域的全面了解和有价值的参考。一、简介第一部分“简介”主要介绍了实例分割的背景、定义和挑战。
- MobileNet家族:从v1到v4的架构演进与发展历程
彩旗工作室
人工智能架构人工智能机器学习cnn卷积神经网络
MobileNet是一个专为移动设备和嵌入式系统设计的轻量化卷积神经网络(CNN)家族,旨在在资源受限的环境中实现高效的图像分类、对象检测和语义分割等任务。自2017年首次推出以来,MobileNet经历了从v1到v4的多次迭代,每一代都在计算效率、模型大小和准确性上取得了显著进步。本文将详细探讨MobileNetv1、v2、v3和v4的原理、架构设计及其发展历程,并分析其关键创新和性能表现。Mo
- 整理:4篇论文介绍实时语义分割的未来,Transformer架构下的性能与效率平衡
mslion
transformer深度学习人工智能语义分割
在Transformer架构推动下,计算机视觉领域致力于打造一个极为强大且通用的大规模模型,它能处理物体检测、图像分割等多种任务。不少基于Transformer架构的研究成果显著,其通用模型在特定应用中表现出色,在图像和视频分割方面,通用设计的研究成果也超越了以往定制模型。其中,分割一切模型(SAM)在交互式分割中表现突出,能统一应对点、边界框、掩码和文本输入等交互方式。然而,多数此类研究存在弊端
- 【Scannet V2 三维数据集下载】
萧伯纳.
python深度学习学习
ScannetV2三维数据下载ScannetV2数据介绍:“ScanNet是一个RGB-D视频数据集,包含2多次扫描中的5万次观看,并带有1500D摄像机姿势、表面重建和实例级语义分割进行注释。为了收集这些数据,我们设计了一个易于使用且可扩展的RGB-D捕获系统,其中包括自动表面重建和众包语义注释。我们表明,使用这些数据有助于在多个3D场景理解任务上实现最先进的性能,包括3D对象分类、语义体素标记
- 点云语义分割:PointNet++在S3DIS数据集上的训练
完美代码
3dneo4j点云
点云语义分割:PointNet++在S3DIS数据集上的训练点云语义分割是计算机视觉领域的一个重要任务,旨在将点云数据中的每个点分配给其对应的语义类别。PointNet++是一种流行的深度学习方法,可用于处理点云数据,并在各种任务中取得了良好的性能。在本文中,我们将探讨如何使用PointNet++模型在S3DIS数据集上进行训练,并提供相应的源代码。数据集介绍S3DIS数据集是一个常用的用于室内场
- 深度学习篇---Opencv中的机器学习和深度学习
Ronin-Lotus
深度学习篇图像处理篇深度学习opencv机器学习python
文章目录前言一、OpenCV中的机器学习1.概述2.使用步骤步骤1:准备数据步骤2:创建模型步骤3:训练模型步骤4:预测3.优点简单易用轻量级实时性4.缺点特征依赖性能有限二、OpenCV中的深度学习1.概述图像分类(如ResNet、MobileNet)目标检测(如YOLO、SSD)语义分割(如DeepLab)人脸检测(如OpenFace)2.使用步骤步骤1:加载模型步骤2:准备输入数据步骤3:推
- 【YOLOv12改进trick】StarBlock引入YOLOv12,创新涨点优化,含创新点Python代码,方便发论文
zy_destiny
YOLOv12及改进优化创新人工智能深度学习机器学习YOLO神经网络开发语言python
改进模块:StarBlock解决问题:采用StarBlock将输入数据映射到一个极高维的非线性特征空间,生成丰富的特征表示,使得模型在处理复杂数据时更加有效。改进优势:简单粗暴的星型乘法涨点却很明显适用场景:目标检测、语义分割、自然语言处理等多种场景高效紧凑的模型,不适用于大模型思路来源:CVPR2024《RewritetheStars》目录1.设计动机2.启发来源3.将StarBlock引入YO
- 深度学习代码分析——自用
肆——
深度学习人工智能笔记
代码来自:https://github.com/ChuHan89/WSSS-Tissue?tab=readme-ov-file借助了一些人工智能1_train_stage1.py代码功能总览该代码是弱监督语义分割(WSSS)流程的Stage1训练与测试脚本,核心任务是通过多标签分类模型生成图像级标签,为后续生成伪掩码(Pseudo-Masks)提供基础。代码分为train_phase和test_p
- DenseUNet 改进:添加ASPP模块
听风吹等浪起
AI改进系列深度学习人工智能计算机视觉神经网络网络
目录1.ASPP模块2.DenseUNet改进3.完整代码Tips:融入模块后的网络经过测试,可以直接使用,设置好输入和输出的图片维度即可1.ASPP模块ASPP(AtrousSpatialPyramidPooling,空洞空间金字塔池化)是语义分割模型(如DeepLab系列)中的核心模块,旨在捕捉多尺度上下文信息,提升模型对不同尺寸物体的分割效果。1.背景与动机问题:图像中的物体尺寸差异大(如汽
- 计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
紫雾凌寒
AI炼金厂#计算机视觉#深度学习机器学习计算机视觉人工智能transformerConvNeXt动态网络神经网络
一、引言在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)长期以来一直是核心技术,自诞生以来,它在图像分类、目标检测、语义分割等诸多任务中都取得了令人瞩目的成果。然而,随着VisionTransformer(ViT)的出现,计算机视觉领域的格局发生了重大变化。ViT通过自注意力机制,打破了传统卷积神经网络的局部感知局限,能够捕捉长距离依赖关系,在图
- VSLAM新方案之《在复杂环境中实现高精度与超强鲁棒性》
OAK中国_官方
SLAM人工智能rpab-map
OAKChina&苏州泛科特机器人联合推出OAK-DSeries&因子空间感知(FactorPerceptionKit)VSLAM解决方案01FactorPerceptionKit简介FactorPerceptionKit是一种真正基于深度学习技术的VSLAM方案,不同于许多厂商仅通过添加目标检测或语义分割模型来实现额外功能,我们直接在SLAM底层使用HF-Net模型,该模型同时进行局部特征点检测
- 文章精读篇——用于遥感小样本语义分割的可学习Prompt
LiXiang like coding吗
学习prompt人工智能
题目:LearnablePromptforFew-ShotSemanticSegmentationinRemoteSensingDomain会议:CVPR2024Workshop论文:10.48550/arXiv.2404.10307相关竞赛:https://codalab.lisn.upsaclay.fr/competitions/17568年份:2024任务背景小样本语义分割(Few-shot
- 计算机视觉实战|Mask2Former实战:轻松掌握全景分割、实例分割与语义分割
紫雾凌寒
AI炼金厂#计算机视觉计算机视觉python深度学习mask2formertransformerpytorch
一、引言上一篇文章《计算机视觉|Mask2Former:开启实例分割新范式》,我们学习了Mask2Former的框架原理、优缺点以及应用领域。今天要带大家一起探索一个强大的图像分割工具——Mask2Former。作为一名技术博主,我的目标是让复杂的概念变得简单易懂,即使你是刚入门的小白,也能通过这篇文章学会使用Mask2Former进行全景分割、实例分割和语义分割。我会用通俗的语言一步步讲解,还会
- 动态视觉SLAM的亿点点思考(含20项最新开源代码链接)[上篇]
3D视觉工坊
3D视觉从入门到精通人工智能
作者:泡椒味的口香糖|来源:3D视觉工坊添加微信:dddvisiona,备注:SLAM,拉你入群。文末附行业细分群。0.笔者个人体会动态环境下的视觉SLAM一直都是研究的重点和难点,但最近动态SLAM的paper越来越少,感觉主要原因是动态SLAM的框架已经固化,很难做出大的创新。现有的模板基本就是使用目标检测或者语义分割网络剔除动态特征点,然后用几何一致性做进一步的验证。笔者最近也在思考突破口,
- 人工智能训练师如何做图像数据标注,从情感分析和实体分析两个个场景分析
小宝哥Code
人工智能训练师人工智能
在人工智能训练中,图像情感分析和图像实体分析是两个重要的应用场景。高质量的图像数据标注对于训练情感识别模型和目标检测/语义分割模型至关重要。本指南将详细介绍:情感分析标注(EmotionAnalysis)实体分析标注(EntityRecognition)自动化标注工具Python代码示例数据格式与存储标注数据质量评估1.情感分析(EmotionAnalysis)标注1.1情感分析简介图像情感分析(
- 景联文科技数据处理平台:支持高质量图像标注服务
景联文科技
人工智能科技计算机视觉
图像标注是计算机视觉领域中不可或缺的一环,它通过为图像添加标签来帮助机器学习算法理解图像内容。这一过程对于创建高质量的训练数据集至关重要,使得AI模型能够准确地识别和分类现实世界中的物体。常见的图像标注类型:边界框标注:这是最常用的标注方式之一,通常用于物体检测任务。通过绘制矩形框来确定图像中目标物体的位置,可以是二维或三维形式。分割标注:包括语义分割(同一类别的所有实例被视为整体)和实例分割(每
- Python实战:解析labelme标注数据——如何将数据转换为COCO格式
程序员杨弋
Python全栈工程师学习指南python开发语言
在计算机视觉中,标注数据是非常重要的,而Labelme是一个简单易用的自由标注工具,被广泛应用于图像语义分割、目标检测、实例分割等领域,然而标注数据并不总是以我们需要的格式存在,因此需要进行适当的转换,本文将详细介绍如何将Labelme标注数据转换为COCO格式。首先需要安装相关的Python库,包括labelme、numpy、matplotlib、pillow等,在安装完成后设置数据路径,并读取
- 计算机视觉四大任务模型汇总
Zero_one_ws
《神经网络与深度学习》理论计算机视觉人工智能深度学习图像分类图像目标检测目标分割关键点检测
计算机视觉中有四大核心任务:1-分类任务、2-目标检测任务、3-目标分割任务和4-关键点检测任务文章1:一文读懂计算机视觉4大任务文章2:图像的目标分割任务:语义分割和实例分割不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:(注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用)1-分类任务模型序号模型ipynb模型的github链
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- 深度学习语义分割实战:ResNet 与 ViT 结合的模型解析
高山仰星
深度学习
1.引言语义分割是计算机视觉中的重要任务,其目标是将输入图像中的每个像素分类到特定的类别。本项目结合了ResNet(ResidualNetwork)和ViT(VisionTransformer),构建了高性能的语义分割模型。本文将详细解析该模型的架构、训练流程及其应用。2.语义分割模型解析本项目采用ResNet和ViT结合的方式进行语义分割,并使用CBAM注意力机制增强特征提取能力。涉及的核心文件
- python工具方法 19 语义分割结果转labelme标注(可用于大图裁剪)
万里鹏程转瞬至
python工具方法labelme语义分割opencvpng转labelme标注
将语义分割结果进行转换为labelme标注后,可用再次进行调整,然后重新生成标注数据。此外,对于一些实例分割的coco数据,也可以将img和mask裁剪成小图后,重新利用这份代码重新生成标签绘图,然后再转coco数据。语义分割结果转labelme标注,本质上是利用opencv的多边形拟合功能,在进行拟合时发现对于中空图形的孔洞区域会拟合出背景区域的多边形,因此需要对背景区域进行计算区分,此代码生成
- 使用U-Net处理Postdam数据集进行语义分割任务 如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究语义分割数据集
计算机C9硕士_算法工程师
语义分割unet
使用U-Net处理Postdam数据集进行语义分割任务如何从准备数据到训练和评估一个基于U-Net的模型。训练使用遥感影像分析研究数据集文章目录1.安装依赖2.数据准备创建自定义的数据加载器3.模型定义4.训练模型5.可视化预测结果Postdam数据集遥感影像-语义分割数据集:Postdam数据集像素大小512*512训练图片为.tif标签图片为.tif数据集(train3678张val920张)
- MobileNetV2: Inverted Residuals and Linear Bottlenecks
TAICHIFEI
Paper人工智能计算机视觉
Link:https://arxiv.org/abs/1801.04381这篇文章是一篇关于MobileNetV2的学术论文,主要介绍了MobileNetV2的架构设计及其在图像分类、目标检测和语义分割任务中的应用。以下是对这些核心内容的简要概述:MobileNetV2架构设计:提出了一种新的神经网络模块——倒残差结构(InvertedResiduals),其中的快捷连接位于瓶颈层之间。使用轻量级
- 基于深度学习的物体分割技术:从理论到实践
人工智能_SYBH
深度学习人工智能神经网络机器学习lstm
1.引言物体分割(ObjectSegmentation)是计算机视觉中的一项核心任务,其目标是将图像中的不同物体或区域分离出来,通常分为语义分割和实例分割两种类型。随着深度学习的迅猛发展,尤其是卷积神经网络(CNN)的应用,物体分割技术已取得了显著的进展。它被广泛应用于医学影像分析、自动驾驶、视频监控、机器人感知等领域。在本篇博客中,我们将深入探讨基于深度学习的物体分割技术,介绍其发展历程、核心原
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文