- 云计算在可视化非线性偏微分方程动力学中的应用:拟线性和半线性示例-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
“拟线性”和“半线性”代表了非线性偏微分方程(PDEs)这一大类中的重要分类。其区别主要在于非线性的表现形式,特别是与未知函数的最高阶导数之间的关系。在偏微分方程的研究中,将其分为线性、半线性、拟线性和完全非线性至关重要,因为用于分析和求解它们(例如,解的存在性、唯一性、正则性、数值方法)的数学技术根据其线性性质而显著不同。非线性偏微分方程通常比线性偏微分方程更难求解和分析,即使在非线性类别中,由
- 模拟多维物理过程与基于云的数值分析-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
高维输运与扩散方程,涵盖了严格的扩散极限、多维扩散理论、先进的数值和基于粒子的模拟方法,以及分数阶/电报式推广,为广泛的科学和工程领域中复杂输运现象的建模、分析和模拟提供了强大的工具。高维输运和扩散方程涵盖了输运方程的严格扩散极限、结合随机和偏微分方程工具的多维扩散理论、先进的数值和基于粒子的模拟方法、分数阶和电报式输运的推广,以及在地球物理和工程系统中的应用。这些框架为建模、分析和模拟许多科学和
- 云驱动的扩散现象可视化-AI云计算数值分析和代码验证
亚图跨际
AI人工智能
扩散是一种基本的被动传输过程,其中粒子由于随机分子运动而从较高浓度移动到较低浓度,影响从生物呼吸到工业半导体掺杂的各种现象。扩散是粒子从高浓度区域向低浓度区域自发移动的过程,由气体或液体中分子的随机运动和碰撞驱动。这是一种不需外部能量输入的被动传输过程。☁️AI云计算数值分析和代码验证影响扩散的重要因素包括:浓度梯度:浓度差异越大,扩散速率越快。当接近平衡时,扩散会减慢。分子质量:较轻的分子比较重
- 通过交互式网页探索传输现象-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
传输过程涉及质量、动量和能量等物理量在各种系统中的基本运动和转移,主要分为动量传输、热量传输和质量传输,在工程、环境科学、生物学和物流等领域至关重要。传输过程是指物理量(如质量、动量和能量)在物理、化学、生物或工程系统中的移动和传递。这些过程是各种科学和工程领域的基础,主要分为三类:☁️AI云计算数值分析和代码验证传输过程的类型动量传输这涉及动量在运动介质(例如流体)中的传递。它对流体流动、沉降、
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 理解与建模弹性膜-AI云计算数值分析和代码验证
亚图跨际
AI人工智能云计算
弹性膜在连接生物学理解和工程创新方面至关重要,因为它们能够模拟软组织力学、实现先进的细胞培养系统和促进柔性设备,广泛应用于软组织生物力学、细胞培养、生物膜建模和生物医学工程等领域。☁️AI云计算数值分析和代码验证弹性膜在连接生物学理解和工程创新方面至关重要,其应用范围从模拟软组织力学到实现先进的细胞培养系统和柔性设备。它们的价值在于能够复制复杂的机械行为,并为生物医学和技术进步提供功能平台。以下是
- 材料力学数值方法:相场法:数值分析方法_2024-08-05_09-54-55.Tex
chenjj4003
材料力学python算法开发语言人工智能机器学习
材料力学数值方法:相场法:数值分析方法绪论相场法的起源与发展相场法,作为材料科学中一种重要的数值分析方法,其起源可以追溯到20世纪80年代。最初,该方法被提出用于描述和模拟材料中的相变过程,特别是固态相变。相场法的核心在于将相变过程视为一个连续的场,通过引入一个或多个相场变量来描述材料中不同相的分布和演化。这种方法的优势在于能够处理复杂的几何形状和多相系统,同时保持计算的稳定性。随着时间的推移,相
- 基于云计算的振动弦分析:谐波可视化与波动方程参数理解-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
振动弦方程是一个基础的偏微分方程,它描述了弹性弦的横向振动。其应用范围广泛,不仅可用于模拟乐器和一般的波动现象,更是数学物理以及深奥的弦理论中的重要基石。☁️AI云计算数值分析和代码验证振动弦方程是描述固定两端弹性弦横向振动的基本偏微分方程(PDE),其典型表达式为:∂2u∂t2=c2∂2u∂x2\frac{\partial^2u}{\partialt^2}=c^2\frac{\partial^2
- [数值分析方法库:第3版].Cambridge.Press.Numerical.Recipes.3rd.Edition【必备工具书】
点云SLAM
算法机器学习人工智能数值分析算法线性代数优化理论特殊函数与随机数生成
《NumericalRecipes:TheArtofScientificComputing,ThirdEdition(2007)》的目录部分(TableofContents)内容。这本书是数值计算领域的经典教材之一,涵盖了从基础数学概念、线性代数、插值与积分,到特殊函数与随机数生成等广泛主题。《科学计算的艺术:数值分析》(第三版)主要章节目录内容(方便查找使用):第1章预备知识1.0引言…第1页1
- WPS Excel转Word格式操作详解:高效处理数据展示的完整方案
nntxthml
wpsexcelwordwindows
WPSExcel转Word格式操作详解:高效处理数据展示的完整方案在日常办公场景中,我们常会遇到需要将Excel表格数据转换为Word文档的情况。例如制作项目报告时,需要将数值分析与文字说明结合呈现,或是将财务数据转换为可编辑的文档格式。本文将以WPSOffice为工具,系统讲解Excel转Word的标准化操作流程,同时提供格式优化和批量处理的高级技巧,助您高效完成跨文档协作。一、基础转换四步法(
- maplesim matlab,maple
余时行
maplesimmatlab
maple(工程计算软件)编辑锁定讨论Maple是目前世界上最为通用的数学和工程计算软件之一,在数学和科学领域享有盛誉,有“数学家的软件”之称。Maple在全球拥有数百万用户,被广泛地应用于科学、工程和教育等领域,用户渗透超过96%的世界主要高校和研究所,超过81%的世界财富五百强企业。Maple系统内置高级技术解决建模和仿真中的数学问题,包括世界上最强大的符号计算、无限精度数值计算、创新的互联网
- Linux画图工具gnuplot
MyTechnologyWorld
LINUX
现在在网上可以找的科学作图软件有不少,其中不乏优秀者,Win平台上有大名鼎鼎的Origin、Tecplot、SigmaPlot等,类UNIX上有LabPlot、gnuplot等。其他的常见的计算软件如Matlab、Mathematica、Maple、Scilab、IDL、Maxima等也都对科学作图有很好的支持,甚至于只要稍加努力使用MS的Excel也可以做出不错的图来。但是笔者最喜爱的工具还是g
- Burgers 方程
一杯水果茶!
瞎捣鼓Burgers方程流体力学
Burgers方程是什么?一维Burgers方程形式和意义直观画面:对流vs.粘性为什么Burgers方程重要?Cole–Hopf变换:从线性回到非线性兼具“可解析性”与“非线性特征”,是物理与数值分析双料“试金石”。如何“通透”地学?先上总结:Burgers方程=“非线性对流+粘性扩散”的炼金石:既保留真实流体非线性,又可解析求解。借助Cole–Hopf变换,可将它视为一个“可完全积分”的经典例
- Python数据分析【Numpy系列】np.linspace()用法详解
若北辰
numpy
np.linspace()是NumPy库中一个非常有用的函数,它用于在指定的区间内生成等间距的样本值。这个函数非常适合在数值分析、数据可视化和信号处理等领域生成数据点。函数语法numpy.linspace(start,stop,num=50,endpoint=True,retstep=False,dtype=
- STM32电机运动控制与直线插补算法原理讲解
驽马匠人
嵌入式/单片机stm32算法嵌入式硬件
1.概念不管是做自动化设备还是机器人运动学,都离不开对电机的控制,根据实际场景有各种各样的运动控制算法,而直线运动就是其中一种控制方式,今天就跟大家分享一个直线插补运动算法的原理,而代码的实现,则采用STM32单片机;插补的概念源自数值分析数学中插值的意思,它是一类在离散的已知数据点范围内构造新数据点的方法,这类方法可以用在机器人运动关节上,也大量应用在自动化数控设备上,比如在数控机床加工过程中,
- 安全邮件系统的Maple实现详解
Yungoal
网络maple
代码改进版:#=============================================#安全邮件系统实现-结合DES和RSA加密#功能:实现安全的消息加密、签名和传输#=============================================#--------------------------#第一部分:消息准备和加密#---------------------
- 【计算方法/数值分析】 期末复习整理
zombo_tany
算法算法图论
1.多项式计算的秦九韶算法对于f(x)=a0xn+a1xn−1...an−1x+anf(x)=a_0x^n+a_1x^{n-1}...a_{n-1}x+a_nf(x)=a0xn+a1xn−1...an−1x+an计算顺序按表格从上往下,从左往右a0a_0a0a1a_1a1a2a_2a2…an−1a_{n-1}an−1ana_nanx=x0x=x_0x=x0b0x0b_0x_0b0x0b1x0b_1
- 开源等宽编程字体 Maple Mono 正式发布 7.0
timer_017
笔记
开源等宽编程字体MapleMono7.0于2025年3月正式发布,以下是其相关介绍:主要特性可变字体:支持无限的字体粗细调整,还提供了手工微调的斜体字形,可满足不同用户对字体显示的个性化需求。丝滑设计:采用圆角设计,使字体整体看起来更加柔和,同时还对@、$、%、&、Q等字符进行了独特设计,此外,斜体的f、i、j、k、l、x、y采用手写风格,看起来更加自然流畅。智能连字:提供了大量的智能连字,像=>
- Deepseek给遥感人的学习与职业发展建议
Python与遥感
学习
Deepseek给遥感人的学习与职业发展建议一、夯实四大基础支柱物理基础深入理解电磁波谱特性(可见光/红外/微波)、大气传输模型、辐射定标原理;掌握不同传感器(光学/SAR/LiDAR)的成像机理与数据特性差异;推荐学习:《遥感物理与定量反演基础》。数学工具矩阵运算(影像处理核心)、傅里叶变换(SAR处理)、概率统计(分类算法);掌握数值分析、最优化理论(用于反演算法);实践推荐:用Python实
- 【数值分析】拉格朗日插值法Matlab代码+插值回归拟合介绍
Wthirteen
matlab
文章目录前言一、插值、拟合、回归介绍二、拉格朗日插值法三、代码编写1.方法一2.方法二3.方法三四、总结参考文献前言本文先是对插值、拟合、回归这三种看似相同的方法进行介绍与区分,其次详细介绍插值中的拉格朗日插值法,并采用三种思路方法编写其对应的Matlab代码,供大家思考。方法一采用多层循环进行编写,码量极小,易于复刻,但并未求出插值函数;方法二采用符号变量结合矩阵运算,完全按照拉格朗日插值法的思
- 自动驾驶领域成长方案
树上求索
自动驾驶人工智能机器学习
一、学习目标成为自动驾驶领域专家,全面掌握自动驾驶技术体系,能独立进行自动驾驶系统设计、开发与优化,解决实际工程问题。二、成长阶段(一)基础理论奠基期(1-2年)专业知识学习:学习数学(高等数学、线性代数、概率论与数理统计、数值分析等),为理解算法和模型提供数学基础;深入研究自动驾驶涉及的专业课程,如控制理论、传感器原理(激光雷达、摄像头、毫米波雷达等)、机器学习(监督学习、无监督学习、深度学习)
- 东南大学研究生-数值分析上机题(2023)Python 6 常微分方程数值解法
天空的蓝耀
python
常微分方程初值问题数值解6.1题目编制RK4方法的通用程序;编制AB4方法的通用程序(由RK4提供初值);编制AB4-AM4预测校正方法通用程序(由RK4提供初值);编制带改进的AB4-AM4预测校正方法通用程序(由RK4提供初值);对于初值问题{y′=−x2y2,0≤x≤1.5,y(0)=3\begin{cases}y'=-x^{2}y^{2},&0\leqx\leq1.5,\\y(0)=3&\
- 东南大学研究生-数值分析上机题(2023)Python 1 绪论
天空的蓝耀
python
舍入误差与有效数1.1题目设SN=∑j=2N1j2−1S_N=\sum\limits_{j=2}^{N}\displaystyle\frac{1}{j^2-1}SN=j=2∑Nj2−11其精确值为12(23−1N−1N+1)\displaystyle\frac{1}{2}\left(\frac{2}{3}-\frac{1}{N}-\frac{1}{N+1}\right)21(32−N1−N+11)
- Pandas数据处理基础6---插值填充及其用法
阳光下的米雪
Pandas数据处理python
插值填充插值是数值分析中一种方法。简而言之,就是借助于一个函数(线性或非线性),再根据已知数据去求解未知数据的值。插值在数据领域非常常见,它的好处在于,可以尽量去还原数据本身的样子。我们可以通过interpolate()方法完成线性插值。当然,其他一些插值算法可以阅读官方文档了解。#生成一个DataFramedf=pd.DataFrame({'A':[1.1,2.2,np.nan,4.5,
- Python科学计算实战:数学建模与数值分析应用
数据小爬虫
api电商api数学建模python开发语言pygame前端facebook数据库
Python在科学计算和数学建模方面有着广泛的应用。以下是一个简单的例子,使用Python进行数学建模和数值分析。这个例子将演示如何使用Python来求解一元二次方程。1.一元二次方程一元二次方程是一个形如(ax^2+bx+c=0)的方程,其中(a\neq0)。2.求解方法求解一元二次方程,我们通常使用公式:[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}]3.Python实现i
- Python求解微分方程
@星辰大海@
python开发语言
一、引言微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。微分方程种类很多,具体分类可参考以下博主的文章:https://blog.csdn.net/air_729/article/details/139411996微分方程的解又分成通解和特解,在工程中大多数微分方程是很难得到通解的,因此出现了数值分析或者计算方法这门学科,通过一次次迭代得到方程的某一个或某几个特解,本文
- 数值分析——LU分解(LU Factorization)
怀帝阍而不见
计算数学c++
本系列整理自博主21年秋季学期本科课程数值分析I的编程作业,内容相对基础,参考书:DavidKincaid,WardCheney-NumericalAnalysisMathematicsofScientificComputing(2002,AmericalMathematicalSociety)目录背景LU分解(LU-Factorization)辅助部分Doolittle分解Cholesky分解定
- 东南大学研究生-数值分析上机题(2023)Python 3 线性代数方程组数值解法
天空的蓝耀
python线性代数
列主元Gauss消去法3.1题目对于某电路的分析,归结为就求解线性方程组RI=V\pmb{RI=V}RI=V,其中R=[31−13000−10000−1335−90−1100000−931−100000000−1079−30000−9000−3057−70−500000−747−300000000−3041000000−50027−2000−9000−229]\pmb{R}=\begin{bmat
- SLAM中常用的库
wq_151
人工智能SLAM计算机视觉人工智能机器学习slam
SLAM中常用的库关于库关于库Pangolin是一个用于OpenGL显示/交互以及视频输入的一个轻量级、快速开发库,下面是Pangolin的Github网址:githubEigen是一个高层次的C++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法。pagenanoflann是一个c++11标准库,用于构建具有不同拓扑(R2,R3(点云),SO(2)和SO(3)(2D和3D旋转组))的
- 机器学习先导课《数值分析》(1)——绪论及误差分析
WarrenRyan
数值分析——绪论及误差分析数值分析——绪论及误差分析全文目录数值分析的作用及其学习工具使用数值分析常用工具数值分析的具体实例(多项式简化求值)计算机数值误差产生机理计算机的数值存储方式计算机误差产生原因误差误差限与精度模型误差观测误差截断误差舍入误差有效数字缺失误差的产生和避免误差的传播算法设计的稳定性与病态条件病态问题计算的稳定性练习题ReferenceAboutMe联系方式全文目录(博客园)机
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite