- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- (179)时序收敛--->(29)时序收敛二九
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛二九(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)
- (180)时序收敛--->(30)时序收敛三十
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛三十(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)
- (158)时序收敛--->(08)时序收敛八
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛八(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)F
- (159)时序收敛--->(09)时序收敛九
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛九(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)F
- (160)时序收敛--->(10)时序收敛十
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛十(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)F
- (153)时序收敛--->(03)时序收敛三
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛三(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)F
- (182)时序收敛--->(32)时序收敛三二
FPGA系统设计指南针
FPGA系统设计(内训)fpga开发时序收敛
1目录(a)FPGA简介(b)Verilog简介(c)时钟简介(d)时序收敛三二(e)结束1FPGA简介(a)FPGA(FieldProgrammableGateArray)是在PAL(可编程阵列逻辑)、GAL(通用阵列逻辑)等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。(b)
- Python实现关联规则推荐
这孩子谁懂哈
PythonMachineLearningpython关联规则机器学习
1.什么关联规则关联规则(AssociationRules)是反映一个事物与其他事物之间的相互依存性和关联性,如果两个或多个事物之间存在一定的关联关系,那么,其中一个事物就能通过其他事物预测到。关联规则是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。关联规则挖掘的最经典的例子就是沃尔玛的啤酒与尿布的故事,通过对超市购物篮数据进行分析,即顾客放入购物篮中不同商品之间的关
- 从门氏元素周期表看三皇五帝在关中论
霜叶红似二月花y
世间所有物质,都是由不同元素组成的,科学家们”认识物质初期,所有元素也是多年逐一认识的。著名的俄罗斯化学家门捷列耶夫(DmitriMendeleev1834-1907),在1869年首创的元素周期表,想必大家都很熟悉。他是怎么发现元素周期规律并制成表的?最权威的说法是他自己笔记中所记载的,是他做梦所得。门氏元素周期表这个表开始并不完善,但已经有个雏形了。当时只有已知的63种元素。但门氏预测应该有1
- 3.1 损失函数和优化:损失函数
做只小考拉
用一个函数把W当做输入,然后看一下得分,定量地估计W的好坏,这个函数被称为“损失函数”。损失函数用于度量W的好坏。有了损失函数的概念后,就可以定量的衡量W到底是好还是坏,要找到一种有效的方法来从W的可行域里,找到W取何值时情况最不坏,,这个过程将会是一个优化过程。损失函数L_i定义:通过函数f给出预测的分数和真实的目标(或者说是标签y),可以定量的描述训练样本预测的好不好,最终的损失函数是在整个数
- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 深度学习-点击率预估-研究论文2024-09-14速读
sp_fyf_2024
深度学习人工智能
深度学习-点击率预估-研究论文2024-09-14速读1.DeepTargetSessionInterestNetworkforClick-ThroughRatePredictionHZhong,JMa,XDuan,SGu,JYao-2024InternationalJointConferenceonNeuralNetworks,2024深度目标会话兴趣网络用于点击率预测摘要:这篇文章提出了一种新
- 损失函数与反向传播
Star_.
PyTorchpytorch深度学习python
损失函数定义与作用损失函数(lossfunction)在深度学习领域是用来计算搭建模型预测的输出值和真实值之间的误差。1.损失函数越小越好2.计算实际输出与目标之间的差距3.为更新输出提供依据(反向传播)常见的损失函数回归常见的损失函数有:均方差(MeanSquaredError,MSE)、平均绝对误差(MeanAbsoluteErrorLoss,MAE)、HuberLoss是一种将MSE与MAE
- BP神经网络的传递函数
大胜归来19
MATLAB
BP网络一般都是用三层的,四层及以上的都比较少用;传输函数的选择,这个怎么说,假设你想预测的结果是几个固定值,如1,0等,满足某个条件输出1,不满足则0的话,首先想到的是hardlim函数,阈值型的,当然也可以考虑其他的;然后,假如网络是用来表达某种线性关系时,用purelin---线性传输函数;若是非线性关系的话,用别的非线性传递函数,多层网络时,每层不一定要用相同的传递函数,可以是三种配合,可
- 机器学习-------数据标准化
罔闻_spider
数据分析算法机器学习人工智能
什么是归一化,它与标准化的区别是什么?一作用在做训练时,需要先将特征值与标签标准化,可以防止梯度防炸和过拟合;将标签标准化后,网络预测出的数据是符合标准正态分布的—StandarScaler(),与真实值有很大差别。因为StandarScaler()对数据的处理是(真实值-平均值)/标准差。同时在做预测时需要将输出数据逆标准化提升模型精度:标准化/归一化使不同维度的特征在数值上更具比较性,提高分类
- Python和R均方根误差平均绝对误差算法模型
亚图跨际
Python交叉知识R回归模型误差指标归一化均方根误差生态状态指标神经网络成本误差气体排放气候模型多项式拟合
要点回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型Python误差指标均方根误差和平均绝对误差均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估计值之间的差异。估计器θ^\hat{\theta}θ^相对于估计参数θ\thetaθ的RMSD定义为均方误差的平方根:RMSD(θ^)=MSE(θ^)=E((θ^−θ
- Xilinx 7系列FPGA架构之器件配置(二)
FPGA技术实战
FPGA器件架构XinxFPGA硬件设计fpga开发
引言:本文我们介绍下7系列FPGA的配置接口,在进行硬件电路图设计时,这也是我们非常关心的内容,本文主要介绍配置模式的选择、配置管脚定义以及如何选择CFGBVS管脚电压及Bank14/15电压。1.概述Xilinx®7系列设备有五个配置接口。每个配置接口对应一个或多个配置模式和总线宽度,如表1所示。有关接口详细的时序信息,可以参阅相应的7系列FPGA数据手册。配置时序主要与FPGA配置时钟管脚CC
- VITS 源码解析2-模型概述
迪三
#NN_Audio音频人工智能
VITs是文本到语音(Text-to-Speech,TTS)任务中最流行的技术之一,其实现思路是将文本语音信息融合到了HiFiGAN潜空间内,通过文本控制HiFiGAN的生成器,输出含文本语义的声音。VITs主要以GAN的方式训练,其生成器G是SynthesizerTrn,判别器D是MPD。VITS的判别器几乎和HiFiGAN一样,生成器则融合了文本、时序、声音三大类模型1.文件概述模型部分包含三
- python数据分析知识点大全
编程零零七
python数据分析python开发语言python数据分析数据分析知识点大全python数据分析知识点python教程python基础
Python数据分析知识点大全可以归纳为以下几个主要方面:一、基础概念与目的数据分析定义:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论,对数据加以详细研究和概括总结的过程。其目的在于从数据中挖掘规律、验证猜想、进行预测。Python在数据分析中的优势:Python因其易学性、快速开发、丰富的扩展库(如NumPy、Pandas等)和成熟的框架,成为数据分析领域的
- Chat GPT带来的几点思考
淡定的胡萝卜
OpenAI公司推出的ChatGPT引起了广泛关注,网上出现各类专家开始预测随着ChatGDP的普及,将会有哪些行业的人面临失业,引发人们的焦虑。不可否认它会给我们的教育行业、媒体行业、学术界等众多行业产生影响,面对这些影响,我们该如何看待呢?近期我阅读了不少相关文章,引发的几点思考,想与大家分享。ChatGPT将会倒逼传统教育的改革。中国传统教育是教师对知识点的传授、学生对知识点的掌握,不仅量多
- 计算机网络基础
柒公子c
1通信协议1.1定义通信协议(communicationsprotocol)是指双方实体完成通信或服务所必须遵循的规则和约定。协议定义了数据单元使用的格式,信息单元应该包含的信息与含义,连接方式,信息发送和接收的时序,从而确保网络中数据顺利地传送到确定的地方。在计算机通信中,通信协议用于实现计算机与网络连接之间的标准,网络如果没有统一的通信协议,电脑之间的信息传递就无法识别。通信协议是指通信各方事
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 数字化供应链架构、全景管理、全流程贯通整体解决方案:供应链管理就是利用管理工具、IT技术将企业引入外部资源的过程精细化、标准化管理,实现高效益低成本运营。
数字化建设方案
数字化转型数据治理主数据数据仓库智能制造数字工厂制造业数字化转型工业互联网供应链数字仓储智慧物流智慧仓储物流园区架构大数据
数字化供应链架构、全景管理、全流程贯通方案数字化供应链架构、全景管理、全流程贯通方案项目背景与目标供应链管理现状及挑战数字化供应链架构概念及优势全景管理与全流程贯通目标预期成果与效益智能管理机制建设需求预测与智能分析应用合同管理智能化提升举措仓储管理自动化和机器人技术应用物流配送优化策略周边系统整合与数据贯通现有系统梳理及评估报告数据接口标准制定和实施计划流程对接和数据交互机制设计监控和报警机制完
- 商业预测 初识R
hongyanwin
r语言预测
1.打开帮助文档首页,查阅其中的“IntroductiontoR”helpRhelp2.安装vcd包install.packages("vcd")3.列出此包中可用的函数和数据集ls("package:vcd")/data(package="vcd")4.载入包并阅读数据集Arthritis的描述library("v.d")/?Arthritis5.显示数据集Arthritis的内容查看数据集结构
- 我还单身,你们就想在我身体里谈恋爱
网易王三三
又到每周六的「三三马克Sansan'sMark」栏目。给新朋友们简单介绍下,这个栏目定位如其名——为周末生活提供姿势,不管看不看,先马了再说。关于周末干什么,查拉图斯特拉如是说:“可以失格,但别失逼格。”我们会为大家推荐私藏的书影音番剧游戏,希望你们喜欢。周末愉快!说在前头,激情预测本番成为七月霸权(喂11区拿科普题材来做新番不是第一次了,之前就有过《萌菌物语》、《摇曳露营》、《血型君》(这应该是
- 什么是AIGC?有哪些免费工具?
chent_某位
AIGC
AIGC(AIGeneratedContent),即“人工智能生成内容”,是指通过人工智能技术自动生成各种类型的数字内容。AIGC让机器能够根据输入的信息或数据生成符合人类需求的文本、图像、音频、视频等内容,极大提高了内容创作的效率。AIGC的背景与起源随着深度学习和自然语言处理技术的快速发展,人工智能已经不再局限于简单的任务,如分类、预测和数据分析,而是具备了生成内容的能力。生成式AI模型,如O
- 利用发电量和气象数据分析来判断光伏仿真系统的准确性
鹧鸪云光伏与储能软件开发
数据分析数据挖掘光伏发电大数据光伏新能源
随着光伏产业的迅速发展,光伏仿真系统通过集成气象数据分析、发电量分析、投融资分析及损耗估算等功能,为光伏项目的全生命周期管理提供了科学依据。光伏仿真系统集成了气象数据分析、发电量预测、投融资分析、损耗估算及光伏设计等功能。其中,气象数据分析是仿真系统的基石,通过整合权威的气象数据(如Meteonorm、Nasa等),模拟光伏电站所在区域的历史气象条件及未来气象预测。基于这些气象数据,发电量分析功能
- 对于在爱情中的情侣来说 三观和信任 真的有那么重要吗
小易趣旅游
我一直认为命运是注定的,有些事情你不能一个人改变。有一定数量的聚会和分散活动。在许多情况下,关系的开始和结束都是可追溯的。如果两个人要长期生活在一起,他们必须默契相处并在许多事情上达成共识。两个人在一起的原因仅仅是他们想携手走未来的道路,并且一路上会有很多变化。有些事情是不可预测的,无法干预。因此,一旦在一个关系中存在这三个表现,矛盾就会不断放大,两个人的命运就会精疲力尽。1.缺乏信任和相互怀疑实
- java观察者模式
3213213333332132
java设计模式游戏观察者模式
观察者模式——顾名思义,就是一个对象观察另一个对象,当被观察的对象发生变化时,观察者也会跟着变化。
在日常中,我们配java环境变量时,设置一个JAVAHOME变量,这就是被观察者,使用了JAVAHOME变量的对象都是观察者,一旦JAVAHOME的路径改动,其他的也会跟着改动。
这样的例子很多,我想用小时候玩的老鹰捉小鸡游戏来简单的描绘观察者模式。
老鹰会变成观察者,母鸡和小鸡是
- TFS RESTful API 模拟上传测试
ronin47
TFS RESTful API 模拟上传测试。
细节参看这里:https://github.com/alibaba/nginx-tfs/blob/master/TFS_RESTful_API.markdown
模拟POST上传一个图片:
curl --data-binary @/opt/tfs.png http
- PHP常用设计模式单例, 工厂, 观察者, 责任链, 装饰, 策略,适配,桥接模式
dcj3sjt126com
设计模式PHP
// 多态, 在JAVA中是这样用的, 其实在PHP当中可以自然消除, 因为参数是动态的, 你传什么过来都可以, 不限制类型, 直接调用类的方法
abstract class Tiger {
public abstract function climb();
}
class XTiger extends Tiger {
public function climb()
- hibernate
171815164
Hibernate
main,save
Configuration conf =new Configuration().configure();
SessionFactory sf=conf.buildSessionFactory();
Session sess=sf.openSession();
Transaction tx=sess.beginTransaction();
News a=new
- Ant实例分析
g21121
ant
下面是一个Ant构建文件的实例,通过这个实例我们可以很清楚的理顺构建一个项目的顺序及依赖关系,从而编写出更加合理的构建文件。
下面是build.xml的代码:
<?xml version="1
- [简单]工作记录_接口返回405原因
53873039oycg
工作
最近调接口时候一直报错,错误信息是:
responseCode:405
responseMsg:Method Not Allowed
接口请求方式Post.
- 关于java.lang.ClassNotFoundException 和 java.lang.NoClassDefFoundError 的区别
程序员是怎么炼成的
真正完成类的加载工作是通过调用 defineClass来实现的;
而启动类的加载过程是通过调用 loadClass来实现的;
就是类加载器分为加载和定义
protected Class<?> findClass(String name) throws ClassNotFoundExcept
- JDBC学习笔记-JDBC详细的操作流程
aijuans
jdbc
所有的JDBC应用程序都具有下面的基本流程: 1、加载数据库驱动并建立到数据库的连接。 2、执行SQL语句。 3、处理结果。 4、从数据库断开连接释放资源。
下面我们就来仔细看一看每一个步骤:
其实按照上面所说每个阶段都可得单独拿出来写成一个独立的类方法文件。共别的应用来调用。
1、加载数据库驱动并建立到数据库的连接:
Html代码
St
- rome创建rss
antonyup_2006
tomcatcmsxmlstrutsOpera
引用
1.RSS标准
RSS标准比较混乱,主要有以下3个系列
RSS 0.9x / 2.0 : RSS技术诞生于1999年的网景公司(Netscape),其发布了一个0.9版本的规范。2001年,RSS技术标准的发展工作被Userland Software公司的戴夫 温那(Dave Winer)所接手。陆续发布了0.9x的系列版本。当W3C小组发布RSS 1.0后,Dave W
- html表格和表单基础
百合不是茶
html表格表单meta锚点
第一次用html来写东西,感觉压力山大,每次看见别人发的都是比较牛逼的 再看看自己什么都还不会,
html是一种标记语言,其实很简单都是固定的格式
_----------------------------------------表格和表单
表格是html的重要组成部分,表格用在body里面的
主要用法如下;
<table>
&
- ibatis如何传入完整的sql语句
bijian1013
javasqlibatis
ibatis如何传入完整的sql语句?进一步说,String str ="select * from test_table",我想把str传入ibatis中执行,是传递整条sql语句。
解决办法:
<
- 精通Oracle10编程SQL(14)开发动态SQL
bijian1013
oracle数据库plsql
/*
*开发动态SQL
*/
--使用EXECUTE IMMEDIATE处理DDL操作
CREATE OR REPLACE PROCEDURE drop_table(table_name varchar2)
is
sql_statement varchar2(100);
begin
sql_statement:='DROP TABLE '||table_name;
- 【Linux命令】Linux工作中常用命令
bit1129
linux命令
不断的总结工作中常用的Linux命令
1.查看端口被哪个进程占用
通过这个命令可以得到占用8085端口的进程号,然后通过ps -ef|grep 进程号得到进程的详细信息
netstat -anp | grep 8085
察看进程ID对应的进程占用的端口号
netstat -anp | grep 进程ID
&
- 优秀网站和文档收集
白糖_
网站
集成 Flex, Spring, Hibernate 构建应用程序
性能测试工具-JMeter
Hmtl5-IOCN网站
Oracle精简版教程网站
鸟哥的linux私房菜
Jetty中文文档
50个jquery必备代码片段
swfobject.js检测flash版本号工具
- angular.extend
boyitech
AngularJSangular.extendAngularJS API
angular.extend 复制src对象中的属性去dst对象中. 支持多个src对象. 如果你不想改变一个对象,你可以把dst设为空对象{}: var object = angular.extend({}, object1, object2). 注意: angular.extend不支持递归复制. 使用方法: angular.extend(dst, src); 参数:
- java-谷歌面试题-设计方便提取中数的数据结构
bylijinnan
java
网上找了一下这道题的解答,但都是提供思路,没有提供具体实现。其中使用大小堆这个思路看似简单,但实现起来要考虑很多。
以下分别用排序数组和大小堆来实现。
使用大小堆:
import java.util.Arrays;
public class MedianInHeap {
/**
* 题目:设计方便提取中数的数据结构
* 设计一个数据结构,其中包含两个函数,1.插
- ajaxFileUpload 针对 ie jquery 1.7+不能使用问题修复版本
Chen.H
ajaxFileUploadie6ie7ie8ie9
jQuery.extend({
handleError: function( s, xhr, status, e ) {
// If a local callback was specified, fire it
if ( s.error ) {
s.error.call( s.context || s, xhr, status, e );
}
- [机器人制造原则]机器人的电池和存储器必须可以替换
comsci
制造
机器人的身体随时随地可能被外来力量所破坏,但是如果机器人的存储器和电池可以更换,那么这个机器人的思维和记忆力就可以保存下来,即使身体受到伤害,在把存储器取下来安装到一个新的身体上之后,原有的性格和能力都可以继续维持.....
另外,如果一
- Oracle Multitable INSERT 的用法
daizj
oracle
转载Oracle笔记-Multitable INSERT 的用法
http://blog.chinaunix.net/uid-8504518-id-3310531.html
一、Insert基础用法
语法:
Insert Into 表名 (字段1,字段2,字段3...)
Values (值1,
- 专访黑客历史学家George Dyson
datamachine
on
20世纪最具威力的两项发明——核弹和计算机出自同一时代、同一群年青人。可是,与大名鼎鼎的曼哈顿计划(第二次世界大战中美国原子弹研究计划)相 比,计算机的起源显得默默无闻。出身计算机世家的历史学家George Dyson在其新书《图灵大教堂》(Turing’s Cathedral)中讲述了阿兰·图灵、约翰·冯·诺依曼等一帮子天才小子创造计算机及预见计算机未来
- 小学6年级英语单词背诵第一课
dcj3sjt126com
englishword
always 总是
rice 水稻,米饭
before 在...之前
live 生活,居住
usual 通常的
early 早的
begin 开始
month 月份
year 年
last 最后的
east 东方的
high 高的
far 远的
window 窗户
world 世界
than 比...更
- 在线IT教育和在线IT高端教育
dcj3sjt126com
教育
codecademy
http://www.codecademy.com codeschool
https://www.codeschool.com teamtreehouse
http://teamtreehouse.com lynda
http://www.lynda.com/ Coursera
https://www.coursera.
- Struts2 xml校验框架所定义的校验文件
蕃薯耀
Struts2 xml校验Struts2 xml校验框架Struts2校验
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 15:54:59 星期六
http://fa
- mac下安装rar和unrar命令
hanqunfeng
mac
1.下载:http://www.rarlab.com/download.htm 选择
RAR 5.21 for Mac OS X 2.解压下载后的文件 tar -zxvf rarosx-5.2.1.tar 3.cd rar sudo install -c -o $USER unrar /bin #输入当前用户登录密码 sudo install -c -o $USER rar
- 三种将list转换为map的方法
jackyrong
list
在本文中,介绍三种将list转换为map的方法:
1) 传统方法
假设有某个类如下
class Movie {
private Integer rank;
private String description;
public Movie(Integer rank, String des
- 年轻程序员需要学习的5大经验
lampcy
工作PHP程序员
在过去的7年半时间里,我带过的软件实习生超过一打,也看到过数以百计的学生和毕业生的档案。我发现很多事情他们都需要学习。或许你会说,我说的不就是某种特定的技术、算法、数学,或者其他特定形式的知识吗?没错,这的确是需要学习的,但却并不是最重要的事情。他们需要学习的最重要的东西是“自我规范”。这些规范就是:尽可能地写出最简洁的代码;如果代码后期会因为改动而变得凌乱不堪就得重构;尽量删除没用的代码,并添加
- 评“女孩遭野蛮引产致终身不育 60万赔偿款1分未得”医腐深入骨髓
nannan408
先来看南方网的一则报道:
再正常不过的结婚、生子,对于29岁的郑畅来说,却是一个永远也无法实现的梦想。从2010年到2015年,从24岁到29岁,一张张新旧不一的诊断书记录了她病情的同时,也清晰地记下了她人生的悲哀。
粗暴手术让人发寒
2010年7月,在酒店做服务员的郑畅发现自己怀孕了,可男朋友却联系不上。在没有和家人商量的情况下,她决定堕胎。
12月5日,
- 使用jQuery为input输入框绑定回车键事件 VS 为a标签绑定click事件
Everyday都不同
jspinput回车键绑定clickenter
假设如题所示的事件为同一个,必须先把该js函数抽离出来,该函数定义了监听的处理:
function search() {
//监听函数略......
}
为input框绑定回车事件,当用户在文本框中输入搜索关键字时,按回车键,即可触发search():
//回车绑定
$(".search").keydown(fun
- EXT学习记录
tntxia
ext
1. 准备
(1) 官网:http://www.sencha.com/
里面有源代码和API文档下载。
EXT的域名已经从www.extjs.com改成了www.sencha.com ,但extjs这个域名会自动转到sencha上。
(2)帮助文档:
想要查看EXT的官方文档的话,可以去这里h
- mybatis3的mapper文件报Referenced file contains errors
xingguangsixian
mybatis
最近使用mybatis.3.1.0时无意中碰到一个问题:
The errors below were detected when validating the file "mybatis-3-mapper.dtd" via the file "account-mapper.xml". In most cases these errors can be d