- 手绘电路图的节点和端点检测一个简化版的算法实现框架
zhangfeng1133
算法
于论文描述,我将提供一个简化版的算法实现框架,用于手绘电路图的节点和端点检测,并整合生成电路原理图。以下代码结合了YOLOv5目标检测和传统图像处理技术,符合论文中提到的98.2%mAP和92%节点识别准确率的关键指标。核心算法实现(Python+OpenCV+YOLOv5)importcv2importnumpyasnpimporttorchfromyolov5importYOLOv5#需要安装
- 大规模图计算引擎的分区与通信优化:负载均衡与网络延迟的解决方案
LCG元
系统服务架构负载均衡网络运维
目录一、系统架构设计与核心流程1.1原创架构图解析1.2双流程对比分析二、分区策略优化实践2.1动态权重分区算法实现(Python)三、通信优化机制实现3.1基于RDMA的通信层实现(TypeScript)四、性能对比与调优4.1分区策略基准测试五、生产级部署方案5.1Kubernetes部署配置(YAML)5.2安全审计配置六、技术前瞻与演进附录:完整技术图谱一、系统架构设计与核心流程1.1原创
- 探索OpenCV 3.2源码:计算机视觉的架构与实现
轩辕姐姐
本文还有配套的精品资源,点击获取简介:OpenCV是一个全面的计算机视觉库,提供广泛的功能如图像处理、对象检测和深度学习支持。OpenCV3.2版本包含了改进的深度学习和GPU加速特性,以及丰富的示例程序。本压缩包文件提供了完整的OpenCV3.2源代码,对于深入学习计算机视觉算法和库实现机制十分宝贵。源码的模块化设计、C++接口、算法实现、多平台支持和性能优化等方面的深入理解,都将有助于开发者的
- 面试高频题 力扣 130. 被围绕的区域 洪水灌溉(FloodFill) 深度优先遍历(dfs) 暴力搜索 C++解题思路 每日一题
Q741_147
C/C++每日一题:从语法到算法面试leetcode深度优先c++洪水灌溉
目录零、题目描述一、为什么这道题值得你花时间掌握?二、题目拆解:提取核心关键点三、解题思路:从边界入手,反向标记四、算法实现:深度优先遍历(DFS)+两次遍历五、C++代码实现:一步步拆解代码拆解时间复杂度空间复杂度七、坑点总结八、举一反三九、总结零、题目描述题目链接:被围绕的区域题目描述:示例1:输入:board=[[“X”,“X”,“X”,“X”],[“X”,“O”,“O”,“X”],[“X”
- Java设计模式之行为型模式(策略模式)介绍与说明
爪哇手记
#Java知识点java设计模式策略模式
一、策略模式简介策略模式(StrategyPattern)是一种行为型设计模式,它定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。策略模式让算法独立于使用它的客户而变化,属于对象行为型模式。其核心思想是将算法的定义与使用分离,通过接口或抽象类来定义算法族,具体算法实现由具体策略类完成,客户端可以根据需要选择合适的策略。二、策略模式的结构抽象策略(St
- 在IDEA中无缝接入DeepSeek:智能编程助手指南
摆烂大大王
deepseekintellij-ideajavaidedeepseekAIGC
一、为什么要在IDEA中使用DeepSeek?DeepSeek作为先进的AI编程助手,能提供:智能代码补全与建议实时错误检测与修复方案代码解释与文档生成复杂算法实现建议多语言支持(Python/Java/JS等)二、接入前准备获取API密钥访问DeepSeek官网注册账号在控制台创建APIKey并保存IDEA环境要求IntelliJIDEA2020.3+安装HTTPClient插件(已内置)三、两
- LeetCode题目(Python实现):课程表 II
RexT1
LeetCode题目列表队列数据结构leetcodepython
文章目录题目拓扑序列:入度表(广度优先遍历)算法实现执行结果复杂度分析拓扑序列:深度优先搜索算法实现执行结果复杂度分析题目现在你总共有n门课需要选,记为0到n-1。在选修某些课程之前需要一些先修课程。例如,想要学习课程0,你需要先完成课程1,我们用一个匹配来表示他们:[0,1]给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回一种就可以了。如
- AI人工智能遇上TensorFlow:技术融合新趋势
AI大模型应用之禅
人工智能tensorflowpythonai
AI人工智能遇上TensorFlow:技术融合新趋势关键词:人工智能、TensorFlow、深度学习、神经网络、机器学习、技术融合、AI开发摘要:本文深入探讨了人工智能技术与TensorFlow框架的融合发展趋势。我们将从基础概念出发,详细分析TensorFlow在AI领域的核心优势,包括其架构设计、算法实现和实际应用。文章包含丰富的技术细节,如神经网络原理、TensorFlow核心算法实现、数学
- 基于大模型的急性出血坏死性胰腺炎预测技术方案
LCG元
人工智能python
目录一、算法实现伪代码1.数据预处理与特征工程2.大模型训练(以Transformer为例)3.实时预测与动态调整二、模块流程图1.术前预测流程2.术中动态决策流程3.术后护理流程三、系统集成方案1.系统架构图2.核心模块交互流程四、系统部署拓扑图1.物理部署拓扑2.部署说明五、技术验证方案1.交叉验证流程2.实验验证设计六、健康教育模块示例一、算法实现伪代码1.数据预处理与特征工程#数据清洗与归
- 大数据领域数据产品的零售行业应用创新模式
大数据洞察
大数据与AI人工智能大数据零售单例模式ai
大数据领域数据产品的零售行业应用创新模式关键词:大数据、零售行业、数据产品、应用创新、客户洞察、智能决策、数字化转型摘要:本文深入探讨了大数据技术在零售行业中的应用创新模式。我们将从零售行业数字化转型的背景出发,分析大数据产品如何重塑零售价值链,包括客户洞察、供应链优化、精准营销和智能决策等方面。文章将详细介绍相关技术原理、算法实现和实际应用案例,为零售企业提供可操作的大数据应用框架和创新思路。1
- Python核心基础DAY1--Python的基础变量类型之字符串和数字类型
一、引言Python作为一种功能强大且广泛应用的编程语言,其基础变量类型是构建各种复杂程序的基石。在Python中,字符串和数字类型是最常用的基础变量类型之一。对于初学者来说,深入理解这两种类型是掌握Python编程的关键第一步。无论是数据处理、算法实现还是构建Web应用程序,对字符串和数字类型的熟练运用都至关重要。二、变量变量是代数的思想,是用来引用数据和功能占位的,具备动态性和可变性;使用的变
- AIGC领域AI作画:在数字雕塑中的应用实践
AI原生应用开发
AI原生应用开发AIGCAI作画ai
AIGC领域AI作画:在数字雕塑中的应用实践关键词:AIGC、AI作画、数字雕塑、生成对抗网络、3D建模、艺术创作、深度学习摘要:本文深入探讨了AIGC(人工智能生成内容)技术在数字雕塑领域的创新应用。我们将从技术原理、算法实现到实际案例,全面解析AI如何赋能传统数字雕塑创作流程。文章首先介绍AIGC在艺术创作中的背景和发展现状,然后详细讲解核心算法原理和数学模型,接着通过实际项目案例展示AI作画
- OpenCV实战之二 | 基于哈希算法比较图像的相似性
w94ghz
OpenCV实战笔记opencv哈希算法人工智能
前言☘️本章节主要介绍常用的图像相似性评价算法:图像哈希算法。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小。图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。目录一、汉明距离二、img_hash模块三、哈希算法哈希算法实现步骤:代码实现一、汉明距离汉明距离(HammingDistance)是用于
- 鸿蒙安全实战:三步实现AES加密,让你的用户密码坚不可摧!
前端世界
harmonyosharmonyos安全华为
摘要在鸿蒙应用中,数据加密是保护敏感信息(如用户密码)的核心手段。本文通过一个用户登录系统的实际场景,详细解析如何使用AES对称加密算法实现密码的安全存储与验证。我们将从密钥生成、加密存储到解密验证逐步展开,并提供完整代码实现和性能分析。描述当用户注册时,系统需将密码加密后存储;登录时需解密验证。直接存储明文密码存在严重安全隐患,而AES-256作为行业标准对称加密算法,能有效解决这一问题。鸿蒙通
- 直线插补动画引擎:从数学原理到C#实现——用代码绘制动态几何艺术
墨夶
C#学习资料c#算法开发语言
一、直线插补核心算法解析1.1DDA算法数学原理//////DDA算法实现直线插补///publicclassLineInterpolator{privatePointF_currentPoint;privatePointF_endPoint;privatefloat_stepSize;privatefloat_dx,_dy;privatefloat_xIncrement,_yIncrement;
- 基于 STM32+FPGA 的快速傅里叶频域图像在 TFT 中显示的设计与实现(项目资料)(ID:8)
嵌入式资料库
嵌入式项目合集fpga开发stm32嵌入式硬件单片机
目录摘要1绪论1.1研究背景与意义1.2国内外研究现状1.3研究内容与目标2系统方案设计2.1总体架构设计2.2硬件方案设计2.2.1主控模块选型2.2.2FPGA模块选型2.2.3TFT显示模块选型2.2.4通信方案设计2.3软件方案设计2.3.1FFT算法实现方案2.3.2频域图像渲染方案3硬件电路设计3.1STM32最小系统电路3.2FPGA模块电路3.3TFT显示模块电路3.4软件IIC通
- 串---暴力字符串匹配算法实现
KYGALYX
数据结构算法数据结构
暴力字符串匹配算法详解暴力字符串匹配算法(BruteForceStringMatchingAlgorithm)是一种简单的字符串匹配算法,它通过逐个比较主串中的字符与模式串中的字符来进行匹配。虽然这种方法简单直观,但在最坏情况下可能需要多次比较,导致效率较低。本文档将详细介绍暴力字符串匹配算法的原理、步骤以及如何在C语言中实现。1.暴力字符串匹配算法原理1.1主串与模式串主串:待搜索的字符串。模式
- 力扣网编程121题:买卖股票的最佳时机之动态规划(简单)
魏劭
逻辑编程题C语言leetcode动态规划算法
一.简介前一篇文章使用贪心算法实现了力扣网上121题:买卖股票的最佳时机,文章如下:力扣网编程189题:买卖股票的最佳时机之贪心算法(简单)-CSDN博客本文使用动态规划实现该题目。二.力扣网编程189题:买卖股票的最佳时机之动态规划(简单)给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票
- 水下目标检测:突破与创新
加油吧zkf
目标跟踪人工智能计算机视觉
水下目标检测技术背景水下环境带来独特挑战:光线衰减导致对比度降低,散射引发图像模糊,色偏使颜色失真。动态水流造成目标形变,小目标(如10×10像素海胆)检测困难。声呐与光学数据融合可提升精度,但多模态对齐仍是技术难点。核心算法实现要点图像预处理直方图均衡化与Retinex算法结合改善对比度和色偏:defsingle_scale_retinex(img,sigma):retinex=np.log10
- 用Python解锁图像处理之力:从基础到智能应用的深度探索
熊猫钓鱼>_>
python图像处理开发语言
在像素构成的数字世界里,Python已成为解码图像奥秘的核心引擎。一、为何选择Python处理图像?超越工具的本质思考当人们谈论图像处理时,往往会陷入工具对比的漩涡(PythonvsMATLABvsC++)。但Python的真正价值在于其构建的完整生态闭环:科学计算基石:NumPy的ndarray结构完美对应图像的多维矩阵本质算法实现自由:从传统算子到深度学习模型的无缝衔接可视化即战力:Matpl
- 分布式领域后端服务的限流算法实现
大厂资深架构师
SpringBoot开发实战分布式算法wpfai
分布式领域后端服务的限流算法实现关键词:分布式系统、限流算法、令牌桶、漏桶、滑动窗口、Redis、高并发摘要:本文深入探讨分布式系统中后端服务的限流算法实现。我们将从基础概念出发,详细分析各种限流算法的原理和适用场景,包括计数器算法、滑动窗口算法、令牌桶算法和漏桶算法。文章将提供Python实现代码和数学建模,并通过实际案例展示如何在分布式环境中使用Redis实现高效的限流机制。最后,我们将讨论限
- 【数据挖掘】支持向量机(SVM)
大雨淅淅
大数据数据挖掘支持向量机算法大数据回归
目录一、支持向量机(SVM)算法概述二、支持向量机(SVM)算法优缺点和改进2.1支持向量机(SVM)算法优点2.2支持向量机(SVM)算法缺点2.3支持向量机(SVM)算法改进三、支持向量机(SVM)算法实现3.1支持向量机(SVM)算法C语言实现3.2支持向量机(SVM)算法JAVA实现3.3支持向量机(SVM)算法python实现四、支持向量机(SVM)算法应用五、支持向量机(SVM)算法发
- RabbitMQ消息队列在大数据系统中的实战应用案例
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据rabbitmq分布式ai
RabbitMQ消息队列在大数据系统中的实战应用案例关键词:RabbitMQ、消息队列、大数据系统、实战案例、高并发处理、分布式架构、数据管道摘要:本文深入探讨RabbitMQ消息队列在大数据系统中的核心应用场景,结合具体技术实现和实战案例,详细解析其在数据采集、实时处理、异步解耦等关键环节的技术优势。通过架构设计原理、核心算法实现、数学模型分析和项目实战,展示如何利用RabbitMQ构建高可靠、
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- 【基于C# + HALCON的工业视系统开发实战】十七、航空级精度!涡轮叶片三维型面检测:激光扫描与CAD模型比对技术
AI_DL_CODE
c#halcon三维检测涡轮叶片点云配准型面偏差激光扫描
摘要:涡轮叶片是航空发动机的核心部件,其型面精度直接影响发动机效率与安全性。传统三坐标测量存在效率低(单叶片需40分钟)、覆盖率不足(仅检测关键截面)等问题。本文基于C#.NETCore6与HALCON24.11,构建三维型面检测系统:通过激光线扫描(每秒2000线)获取百万级点云,经MLS滤波降噪(保留0.03mm细节)与快速采样(0.1mm间隔)优化数据;采用ICP算法实现点云与CAD模型配准
- Python开发从新手到专家:第三章 列表、元组和集合
caifox菜狐狸
Python开发从新手到专家python元素集合列表元组数据结构字典
在Python开发的旅程中,数据结构是每一位开发者必须掌握的核心知识。它们是构建程序的基石,决定了代码的效率、可读性和可维护性。本章将深入探讨Python中的三种基本数据结构:列表、元组和集合。这三种数据结构在实际开发中有着广泛的应用,从简单的数据存储到复杂的算法实现,它们都扮演着不可或缺的角色。无论你是刚刚接触Python的新手,还是希望进一步提升编程技能的开发者,本章都将是你的宝贵指南。我们将
- C语言教学大变革!DeepSeek如何改变高职院校编程课堂?
武汉唯众智创
c语言开发语言程序设计Deepseek
一、引言在当今数字化转型的浪潮中,程序设计与分析能力已成为高职教育中不可或缺的核心竞争力。作为编程语言的基础,C语言不仅训练学生的计算思维,还培养其算法实现能力。然而,当前高职院校的C语言教学面临诸多挑战,如实践环节薄弱、学生创新能力不足等。DeepSeek等新一代智能编码支持系统的出现,为这一现状带来了转机。该系统融合了深度神经网络与语义解析技术,能够智能生成代码、优化缺陷检测、解构程序逻辑,并
- Github 2024-11-01 开源项目月报 Top19
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,本月(2024-11-01统计)共有19个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量Python项目9TypeScript项目3JavaScript项目3Svelte项目1JupyterNotebook项目1Ruby项目1HTML项目1Rust项目1Java项目1C++项目1Go项目1Python中的算法实现集合创建周期:2831天
- 商品中心—14.库存分桶初始化的技术文档
东阳马生架构
商品中心商品系统库存系统
大纲1.库存分桶缓存初始化时涉及的数据表2.库存分桶架构的初始化+扣减+上下线+扩容+下线+预警补货流程3.商品库存⼊桶流程概览4.商品库存分桶缓存初始化请求处理5.商品库存分桶缓存初始化的加分布式锁处理+插入库存变更记录6.商品库存分桶元数据本地+远程缓存查询7.商品库存动态分桶算法实现8.基于分桶算法结果构建库存分桶元数据9.剩余库存写入中心桶缓存+分桶库存写入分桶缓存+分桶元数据写入本地缓存
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比