扩展卡尔曼滤波EKF与多传感器融合

Extended Kalman Filter(扩展卡尔曼滤波)是卡尔曼滤波的非线性版本。在状态转移方程确定的情况下,EKF已经成为了非线性系统状态估计的事实标准。本文将简要介绍EKF,并介绍其在无人驾驶多传感器融合上的应用。

这里写图片描述

KF与EKF

本文假定读者已熟悉KF,若不熟悉请参考卡尔曼滤波简介。

KF与EKF的区别如下:

  1. 预测未来: x=Fx+u x=f(x,u) 代替;其余 F Fj 代替。
  2. 修正当下:将状态映射到测量的 Hx h(x) 代替;其余 H Hj 代替。

其中,非线性函数 f(x,u)h(x) 用非线性得到了更精准的状态预测值、映射后的测量值;线性变换 FjHj 通过线性变换使得变换后的 xz 仍满足高斯分布的假设。

FjHj 计算方式如下:

Fjb=f(x,u)x=h(x)x

这里写图片描述

为什么要用EKF

KF的假设之一就是高斯分布的 x 预测后仍服从高斯分布,高斯分布的 x 变换到测量空间后仍服从高斯分布。可是,假如 FH 是非线性变换,那么上述条件则不成立。

将非线性系统线性化

既然非线性系统不行,那么很自然的解决思路就是将非线性系统线性化。

对于一维系统,采用泰勒一阶展开即可得到:

f(x)f(μ)+f(μ)x(xμ)

对于多维系统,仍旧采用泰勒一阶展开即可得到:

T(x)f(a)+(xa)TDf(a)

其中, Df(a) 是Jacobian矩阵。

多传感器融合

lidar与radar

本文将以汽车跟踪为例,目标是知道汽车时刻的状态 x=(px,py,vx,vy) 。已知的传感器有lidar、radar。

  • lidar:笛卡尔坐标系。可检测到位置,没有速度信息。其测量值 z=(px,py)
  • radar:极坐标系。可检测到距离,角度,速度信息,但是精度较低。其测量值 z=(ρ,ϕ,ρ˙) ,图示如下。

这里写图片描述

传感器融合步骤

这里写图片描述

步骤图如上所示,包括:

  1. 收到第一个测量值,对状态 x 进行初始化。
  2. 预测未来
  3. 修正当下

初始化

初始化,指在收到第一个测量值后,对状态 x 进行初始化。初始化如下,同时加上对时间的更新。

对于radar来说,

pxpyvxvy=10000100[pxpy]

对于radar来说,

pxpyvxvy=ρcosϕρsinϕρ˙cosϕρ˙sinϕ

预测未来

预测主要涉及的公式是:

xP=Fx=FPFT+Q

需要求解的有三个变量: FPQ


F 表明了系统的状态如何改变,这里仅考虑线性系统,F易得:

Fx=10000100dt0100dt01pxpyvxvy


P 表明了系统状态的不确定性程度,用 x 的协方差表示,这里自己指定为:

P=1000010000100000001000


Q 表明了 x=Fx 未能刻画的其他外界干扰。本例子使用线性模型,因此加速度变成了干扰项。 x=Fx 中未衡量的额外项目 v 为:

v=axdt22aydt22axdtaydt=dt220dt00dt220dt[axay]=Ga

v 服从高斯分布 N(0,Q)

Q=E[vvT]=E[GaaTGT]=GE[aaT]GT=G[σ2ax00σ2ay]GT=dt44σ2ax0dt32σ2ax00dt44σ2ay0dt32σ2aydt32σ2ax0dt2σ2ax00dt32σ2ay0dt2σ2ay

修正当下

lidar

lidar使用了KF。修正当下这里牵涉到的公式主要是:

ySKxP=zHx=HPHT+R=PHTS1=x+Ky=(IKH)P

需要求解的有两个变量: HR


H 表示了状态空间到测量空间的映射。

Hx=[10010000]pxpyvxvy


R 表示了测量值的不确定度,一般由传感器的厂家提供,这里lidar参考如下:

Rlaser=[0.0225000.0225]

radar

radar使用了EKF。修正当下这里牵涉到的公式主要是:

ySKxP=zf(x)=HjPHTj+R=PHTjS1=x+Ky=(IKHj)P

区别与上面lidar的主要有:

  1. 状态空间到测量空间的非线性映射 f(x)
  2. 非线性映射线性化后的Jacob矩阵
  3. radar的 Rradar

状态空间到测量空间的非线性映射 f(x) 如下

f(x)=ρϕρ˙=p2x+p2yarctanpypxpxvx+pyvyp2x+p2y


非线性映射线性化后的Jacob矩阵 Hj

Hj=f(x)x=ρpxϕpxρ˙pxρpyϕpyρ˙pyρvxϕvxρ˙vxρvyϕvyρ˙vy


R 表示了测量值的不确定度,一般由传感器的厂家提供,这里radar参考如下:

Rlaser=0.090000.00090000.09

传感器融合实例

多传感器融合的示例如下,需要注意的有:

  1. lidar和radar的预测部分是完全相同的
  2. lidar和radar的参数更新部分是不同的,不同的原因是不同传感器收到的测量值是不同的
  3. 当收到lidar或radar的测量值,依次执行预测、更新步骤
  4. 当同时收到lidar和radar的测量值,依次执行预测、更新1、更新2步骤

这里写图片描述

多传感器融合的效果如下图所示,红点和蓝点分别表示radar和lidar的测量位置,绿点代表了EKF经过多传感器融合后获取到的测量位置,取得了较低的RMSE。

这里写图片描述

你可能感兴趣的:(扩展卡尔曼滤波EKF与多传感器融合)