1.1、在matlab中:
kersiz = 2*ratio - 1;
sig = (1/(2*(2.7725887)/ratio^2))^0.5;
BlurD.K = fspecial('gaussian',[kersiz kersiz],sig);
I_HS = imfilter(I_REF, BlurD.K, 'circular');
1.2、在python中:
sig = 1 / (2 * (2.7725887) / math.pow(ratio, 2)) ** 0.5
kernel = np.multiply(cv2.getGaussianKernel(9, sig), cv2.getGaussianKernel(9, sig).T)
new_lrhs = []
for i in range(Data.shape[2]):
temp = signal.convolve2d(Data[:, :, i], kernel, boundary='wrap', mode='same')
temp = np.expand_dims(temp, -1)
new_lrhs.append(temp)
Data = np.concatenate(new_lrhs, axis=-1)
这两个计算的结果是等价的。
2.1、在matlab中:
d = ifft2(c);
2.2、在python中:
G = []
for i in range(NB):
G.append(np.fft.fft2(a[:, :, i]))
G = np.array(G)
G = G.swapaxes(0, 1)
G = G.swapaxes(1, 2)
3.1、在matlab中:
a = reshape(X', NW, NH, NB);
3.2、在python中:
a = np.reshape(np.transpose(X),(NW,NH,NB),order="F")
4.1、在matlab中
[U,S,V] = svd(Xn,'econ');
S = max(S-lam,0);
Y(:,idx) = U(:,1:size(S,1))*S*V(:,1:size(S,2))';
4.2、在python中
[U, S, V] = svd(Xn, 'econ')
S[:] = [x - lam for x in S]
S[S < 0] = 0
S = np.diag(S)
Y[:, idx] = U[:,0:S.shape[0]].dot(S).dot(V[0:S.shape[1],:])
5.1、在matlab中:
R(i,:) = spline(x, ikonos_sp(valid_ik_bands,i+1), xx);
5.2、在python中
ipo3 = spi.splrep(x, ik[valid_ik_bands-1,i+1]) # Generate model parameters
R[i,:] = spi.splev(xx, ipo3) # Generate interpolation points