第 l l l层内容损失函数定义为 L C l = ∑ i j ( C i j l − G i j l ) 2 L_C^l=\sum\limits_{ij}(C^l_{ij}-G^l_{ij})^2 LCl=ij∑(Cijl−Gijl)2
对于 feature map F F F,定义 F ( k k ′ ) F^{(kk')} F(kk′) 为第 k k k通道和第 k ′ k' k′通道 feature map 的内积,则第 l l l层风格损失函数定义为 L S l = 1 ( n H n W n C ) 2 ∑ k k ′ ( S l ( k k ′ ) − G l ( k k ′ ) ) 2 L_S^l=\frac{1}{(n_Hn_Wn_C)^2}\sum\limits_{kk'}(S^{l(kk')}-G^{l(kk')})^2 LSl=(nHnWnC)21kk′∑(Sl(kk′)−Gl(kk′))2
CNN框架采用VGG19,梯度下降采用L-BFGS。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
imsize = 512 if torch.cuda.is_available() else 128
transform = transforms.Compose([
transforms.Resize(512),
transforms.CenterCrop(imsize),
transforms.ToTensor()])
def image_loader(image_name):
image = Image.open(image_name)
image = image.convert('RGB')
image = transform(image).unsqueeze(0)
return image.to(device, torch.float)
style_img = image_loader("./data/images/the_starry_night.jpg")
content_img = image_loader("./data/images/STJU.jpg")
assert style_img.size() == content_img.size()
def trans(tensor):
image = tensor.cpu().clone()
image = image.squeeze(0)
image = image.numpy()
image = image.transpose((1, 2, 0))
return image
class ContentLoss(nn.Module):
def __init__(self, target):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
a, b, c, d = input.size()
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
cnn = models.vgg19(pretrained=True).features.to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
self.mean = mean.view(-1, 1, 1)
self.std = std.view(-1, 1, 1)
def forward(self, img):
return (img - self.mean) / self.std
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img, content_layers=content_layers_default, style_layers=style_layers_default):
cnn = copy.deepcopy(cnn)
normalization = Normalization(normalization_mean, normalization_std).to(device)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecogniced layer: {}'.format(layer/__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
for i in range(len(model)-1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
input_img = content_img.clone()
def get_input_optimizer(input_img):
optimizer = optim.LBFGS([input_img.requires_grad_()])
return optimizer
def run_style_tranfer(cnn, normalization_mean, normalization_std, content_img, style_img, input_img, num_steps=300, style_weight=10000000000, content_weight=1):
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(cnn, normalization_mean, normalization_std, style_img, content_img)
optimizer = get_input_optimizer(input_img)
print('Optimizing..')
run = [0]
while run[0] < num_steps:
def closure():
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0.0
content_score = 0.0
for sl in style_losses:
style_score +=sl.loss
for cl in content_losses:
content_score +=cl.loss
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
print(run[0])
if run[0] % 50 == 0:
print("run {}:".format(run))
print('Style Loss : {:4f} Content Loss: {:4f}'.format(
style_score.item(), content_score.item()))
print()
return style_score + content_score
optimizer.step(closure)
input_img.data.clamp_(0, 1)
return input_img
output = run_style_tranfer(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, input_img)
style_img = trans(style_img)
content_img = trans(content_img)
output = trans(output.detach())
f, ax = plt.subplots(1, 3)
ax[0].imshow(style_img)
ax[0].set_title('Style Image')
ax[1].imshow(content_img)
ax[1].set_title('Content Image')
ax[2].imshow(output)
ax[2].set_title('Transposed Image')
plt.show()