含义
给定两个集合a[N],b[N],每种集合中的物品都有两种形式0和1分别代表取和不取的状态,用x[N]和y[N]来表示,就是求 ∑ i = 1 N a [ i ] ∗ x [ i ] b [ i ] ∗ y [ i ] \sum\limits_{i=1}^{N}\frac{a[i]*x[i]}{b[i]*y[i]} i=1∑Nb[i]∗y[i]a[i]∗x[i]的最值问题。
解法
遇到这种单调最值的问题,最简单的方法就是用二分的思想,我们可以先拟定一个答案mid= ∑ a [ i ] ∑ b [ i ] \frac{\sum{a[i]}}{\sum{b[i]}} ∑b[i]∑a[i],展开来就变成 ∑ a [ i ] \sum{a[i]} ∑a[i] - mid* ∑ b [ i ] \sum{b[i]} ∑b[i] = 0。然后我们可以调整mid的值去逼近最终的答案。
例子
1.比率最优环
转换一下题意,就是求 点 权 和 边 权 和 \frac{点权和}{边权和} 边权和点权和最大值, 展开变成w(点权) - l(边权)* x(答案)= 0。然后就可以用上述方法把答案用二分来逼近,注意一下判断的技巧,如果结果为负数,那么可以直接用判负环的方法直接退出。
#include
using namespace std;
double eps = 1e-4;
const int N = 1e3 + 5;
const int M = 5e3 + 5;
struct edge {
int to, next;
double vi;
}e[M * 2];
int vis[N], n, cnt, m, h[N], times[N];
double dis[N];
int ve[N];
void add(int u, int v, double w) {
e[cnt].to = v;
e[cnt].vi = w;
e[cnt].next = h[u];
h[u] = cnt++;
}
bool spfa(double mid) {
queue<int> q;
for (int i = 1; i <= n; i++) {
q.push(i);
vis[i] = 1, dis[i] = 0, times[i] = 0;
}
while (q.size()) {
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = h[u]; ~i; i = e[i].next) {
int v = e[i].to;
double va = mid * e[i].vi - (double)ve[u];
if (dis[v] > dis[u] + va) {
dis[v] = dis[u] + va;
times[v] = times[u] + 1;
if (times[v] >= n) return true;
if (!vis[v]) {
q.push(v);
vis[v] = 1;
}
}
}
}
return false;
}
int main() {
scanf("%d %d", &n, &m);
memset(h, -1, sizeof h);
for (int i = 1; i <= n; i++) scanf("%d", &ve[i]);
for (int i = 1; i <= m; i++) {
int x, y;
double z;
scanf("%d %d %lf", &x, &y, &z);
add(x, y, z);
}
double l = 0, r = 1e4 + 1, mid;
while (r - l > eps) {
mid = (l + r) * 0.5;
if (spfa(mid)) l = mid;
else r = mid;
}
printf("%.2lf", mid);
}
2.比率最优生成树
成本=高度差
长度=欧式距离
转化一下就是 c o s t d i s \frac{cost}{dis} discost的最小值
展开来变成cost - mid * dis = 0,要取mid的最小值,则不能存在更小的mid使cost - mid * dis<0,也就等价于最小生成树总边权>0恒成立
如果最小生成树都满足>0,那么所有树都满足,因此可以加大mid的值
记得用prim,kruskal在边多的时候会超时=。=
#include
using namespace std;
const int N = 1e3 + 10;
const int M = 1e6 + 10;
const double INF = 0x3f3f3f3f;
int n, pre[N];
double dis[N], vis[N], val[N], g[N][N], cost[N][N];
struct node {
double x, y;
}p[N];
double get_dis(node x, node y) {
return sqrt((x.x - y.x)*(x.x - y.x) + (x.y - y.y)*(x.y - y.y));
}
bool prim(double mid){
for (int i = 1; i <= n; i++) dis[i] = INF, vis[i] = 0;
dis[1] = 0;
double ans = 0;
for(int i = 1; i <= n; i++){
double mx = INF;
int k = 1;
for(int j = 1; j <= n; j++)
if(!vis[j] && mx > dis[j])
mx = dis[j], k = j;
vis[k] = 1;
ans += dis[k];
for(int j = 1;j <= n; j++){
if(!vis[j] && dis[j] > cost[k][j] - mid * g[k][j])
dis[j] = cost[k][j] - mid * g[k][j];
}
}
return ans >= 0;
}
int main() {
while (scanf("%d", &n) && n){
for (int i = 1; i <= n; i++) scanf("%lf %lf %lf", &p[i].x, &p[i].y, &val[i]);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) continue;
g[i][j] = get_dis(p[i], p[j]);
cost[i][j] = fabs(val[j] - val[i]);
}
}
double l = 0, r = 1e9+1, mid;
while (r - l > 1e-6) {
mid = (l+r)*0.5;
if (prim(mid)) l = mid;
else r = mid;
}
printf("%.3lf\n", mid);
}
}