2. 同步Timer
本章介绍asio如何在定时器上进行阻塞等待(
blocking wait
).
实现,我们包含必要的头文件.
所有的asio类可以简单的通过
include "asio.hpp"
来调用.
此外,这个示例用到了
timer
,我们还要包含
Boost.Date_Time
的头文件来控制时间.
使用asio至少需要一个
boost::asio::io_service
对象.该类提供了访问I/O的功能.我们首先在main函数中声明它.
- int main()
- {
- boost::asio::io_service io;
下一步我们声明
boost::asio::deadline_timer
对象.这个asio的核心类提供I/O的功能(这里更确切的说是定时功能),总是把一个
io_service
对象作为他的第一个构造函数,而第二个构造函数的参数设定timer会在5秒后到时(expired).
- boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
这个简单的示例中我们演示了定时器上的一个阻塞等待.就是说,调用
boost::asio::deadline_timer::wait()
的在创建后5秒内(注意:不是等待开始后),timer到时之前不会返回任何值.
一个
deadline_timer
只有两种状态:
到时
,
未到时
.
如果
boost::asio::deadline_timer::wait()
在到时的timer对象上调用,会立即return.
最后,我们输出理所当然的"Hello, world!"来演示timer到时了.
- std::cout << "Hello, world! ";
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- int main()
- {
- boost::asio::io_service io;
- boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
- t.wait();
- std::cout << "Hello, world! ";
- return 0;
- }
3. 异步Timer
- #include
- #include
- #include
asio的异步函数会在一个异步操作完成后被回调.这里我们定义了一个将被回调的函数.
- void print(const asio::error& )
- {
- std::cout << "Hello, world! ";
- }
- int main()
- {
- asio::io_service io;
- asio::deadline_timer t(io, boost::posix_time::seconds(5));
这里我们调用
asio::deadline_timer::async_wait()
来异步等待
最后,我们必须调用
asio::io_service::run()
.
asio库只会调用那个正在运行的
asio::io_service::run()
的回调函数.
如果
asio::io_service::run()
不被调用,那么回调永远不会发生.
asio::io_service::run()
会持续工作到点,这里就是timer到时,回调完成.
别忘了在调用
asio::io_service::run()
之前设置好io_service的任务.比如,这里,如果我们忘记先调用
asio::deadline_timer::async_wait()
则
asio::io_service::run()
会在瞬间return.
完整的代码:
- #include
- #include
- #include
- void print(const asio::error& )
- {
- std::cout << "Hello, world! ";
- }
- int main()
- {
- asio::io_service io;
- asio::deadline_timer t(io, boost::posix_time::seconds(5));
- t.async_wait(print);
- io.run();
- return 0;
- }
4. 回调函数的参数
这里我们将每秒回调一次,来演示如何回调函数参数的含义
- #include
- #include
- #include
- #include
首先,调整一下timer的持续时间,开始一个异步等待.显示,回调函数需要访问timer来实现周期运行,所以我们再介绍两个新参数
- void print(const asio::error& ,
- asio::deadline_timer* t, int* count)
- {
我们打算让这个函数运行6个周期,然而你会发现这里没有显式的方法来终止io_service.不过,回顾上一节,你会发现当 asio::io_service::run()会在所有任务完成时终止.这样我们当计算器的值达到5时(0为第一次运行的值),不再开启一个新的异步等待就可以了.
- if (*count < 5)
- {
- std::cout << *count << " ";
- ++(*count);
- ...
然后,我们推迟的timer的终止时间.通过在原先的终止时间上增加延时,我们可以确保timer不会在处理回调函数所需时间内的到期.
(原文:
By calculating the new expiry time relative to the old, we can ensure that the timer does not drift away from the whole-second mark due to any delays in processing the handler.)
- t->expires_at(t->expires_at() + boost::posix_time::seconds(1));
然后我们开始一个新的同步等待.如您所见,我们用把
print和他的多个参数用
boost::bind函数合成一个的形为
void(const asio::error&)回调函数(准确的说是
function object).
在这个例子中,
boost::bind的
asio::placeholders::error参数是为了给回调函数传入一个
error对象.当进行一个异步操作,开始
boost::bind时,你需要使用它来匹配回调函数的参数表.下一节中你会学到回调函数不需要
error参数时可以省略它.
- t->async_wait(boost::bind(print,
- asio::placeholders::error, t, count));
- }
- }
- int main()
- {
- asio::io_service io;
- int count = 0;
- asio::deadline_timer t(io, boost::posix_time::seconds(1));
和上面一样,我们再一次使用了绑定
asio::deadline_timer::async_wait()
- t.async_wait(boost::bind(print,
- asio::placeholders::error, &t, &count));
- io.run();
在结尾,我们打印出的最后一次没有设置timer的调用的count的值
- std::cout << "Final count is " << count << " ";
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- #include
- void print(const asio::error& ,
- bsp; asio::deadline_timer* t, int* count)
- {
- if (*count < 5)
- {
- std::cout << *count << " ";
- ++(*count);
- t->expires_at(t->expires_at() + boost::posix_time::seconds(1));
- t->async_wait(boost::bind(print,
- asio::placeholders::error, t, count));
- }
- }
- int main()
- {
- asio::io_service io;
- int count = 0;
- asio::deadline_timer t(io, boost::posix_time::seconds(1));
- t.async_wait(boost::bind(print,
- asio::placeholders::error, &t, &count));
- io.run();
- std::cout << "Final count is " << count << " ";
- return 0;
- }
5. 成员函数作为回调函数
本例的运行结果和上一节类似
- #include
- #include
- #include
- #include
我们先定义一个printer类
- class printer
- {
- public:
-
- printer(boost::asio::io_service& io)
- : timer_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
boost::bind 同样可以出色的工作在成员函数上.众所周知,所有的非静态成员函数都有一个隐式的
this参数,我们需要把
this作为参数
bind到成员函数上.和上一节类似,我们再次用
bind构造出
void(const boost::asio::error&)形式的函数.
注意,这里没有指定
boost::asio::placeholders::error占位符,因为这个
print成员函数没有接受一个
error对象作为参数.
- timer_.async_wait(boost::bind(&printer::print, this));
-
在类的折构函数中我们输出最后一次回调的
count的值
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
print函数于上一节的十分类似,但是用成员变量取代了参数.
- void print()
- {
- if (count_ < 5)
- {
- std::cout << count_ << " ";
- ++count_;
- timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
- timer_.async_wait(boost::bind(&printer::print, this));
- }
- }
- private:
- boost::asio::deadline_timer timer_;
- int count_;
- };
-
现在main函数清爽多了,在运行io_service之前只需要简单的定义一个printer对象.
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- io.run();
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- #include
- class printer
- {
- public:
- printer(boost::asio::io_service& io)
- : timer_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
- timer_.async_wait(boost::bind(&printer::print, this));
- }
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
- void print()
- {
- if (count_ < 5)
- {
- std::cout << count_ << " ";
- ++count_;
- timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
- timer_.async_wait(boost::bind(&printer::print, this));
- }
- }
- private:
- boost::asio::deadline_timer timer_;
- int count_;
- };
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- io.run();
- return 0;
- }
6. 多线程回调同步
本节演示了使用
boost::asio::strand在多线程程序中进行回调同步(synchronise).
先前的几节阐明了如何在单线程程序中用
boost::asio::io_service::run()进行同步.如您所见,asio库确保 仅当当前线程调用
boost::asio::io_service::run()时产生回调.显然,仅在一个线程中调用
boost::asio::io_service::run() 来确保回调是适用于并发编程的.
一个基于asio的程序最好是从单线程入手,但是单线程有如下的限制,这一点在服务器上尤其明显:
- 当回调耗时较长时,反应迟钝.
- 在多核的系统上无能为力
如果你发觉你陷入了这种困扰,可以替代的方法是建立一个
boost::asio::io_service::run()的线程池.然而这样就允许回调函数并发执行.所以,当回调函数需要访问一个共享,线程不安全的资源时,我们需要一种方式来同步操作.
- #include
- #include
- #include
- #include
- #include
在上一节的基础上我们定义一个printer类,此次,它将并行运行两个timer
除了声明了一对
boost::asio::deadline_timer,构造函数也初始化了类型为
boost::asio::strand的
strand_成员.
boost::asio::strand 可以分配的回调函数.它保证无论有多少线程调用了
boost::asio::io_service::run(),下一个回调函数仅在前一个回调函数完成后开始,当然回调函数仍然可以和那些不使用
boost::asio::strand分配,或是使用另一个
boost::asio::strand分配的回调函数一起并发执行.
- printer(boost::asio::io_service& io)
- : strand_(io),
- timer1_(io, boost::posix_time::seconds(1)),
- timer2_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
当一个异步操作开始时,用
boost::asio::strand来 "wrapped(包装)"回调函数.
boost::asio::strand::wrap()会返回一个由
boost::asio::strand分配的新的handler(句柄),这样,我们可以确保它们不会同时运行.
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
多线程程序中,回调函数在访问共享资源前需要同步.这里共享资源是
std::cout 和
count_变量.
- void print1()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 1: " << count_ << " ";
- ++count_;
- timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- }
- }
- void print2()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 2: " << count_ << " ";
- ++count_;
- timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- }
- private:
- boost::asio::strand strand_;
- boost::asio::deadline_timer timer1_;
- boost::asio::deadline_timer timer2_;
- int count_;
- };
main函数中
boost::asio::io_service::run()在两个线程中被调用:主线程、一个
boost::thread线程.
正如单线程中那样,并发的
boost::asio::io_service::run()会一直运行直到完成任务.后台的线程将在所有异步线程完成后终结.
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
- io.run();
- t.join();
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- #include
- #include
- class printer
- {
- public:
- printer(boost::asio::io_service& io)
- : strand_(io),
- timer1_(io, boost::posix_time::seconds(1)),
- timer2_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
- void print1()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 1: " << count_ << " ";
- ++count_;
- timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- }
- }
- void print2()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 2: " << count_ << " ";
- ++count_;
- timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- }
- private:
- boost::asio::strand strand_;
- boost::asio::deadline_timer timer1_;
- boost::asio::deadline_timer timer2_;
- int count_;
- };
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
- io.run();
- t.join();
- return 0;
- }
7. TCP客户端:对准时间
- #include
- #include
- #include
本程序的目的是访问一个时间同步服务器,我们需要用户指定一个服务器(如time-nw.nist.gov),用IP亦可.
(
译者注:日期查询协议,这种时间传输协议不指定固定的传输格式,只要求按照ASCII标准发送数据。)
- using boost::asio::ip::tcp;
- int main(int argc, char* argv[])
- {
- try
- {
- if (argc != 2)
- {
- std::cerr << "Usage: client " << std::endl;
- return 1;
- }
用asio进行网络连接至少需要一个
boost::asio::io_service对象
- boost::asio::io_service io_service;
我们需要把在命令行参数中指定的服务器转换为TCP上的节点.完成这项工作需要
boost::asio::ip::tcp::resolver对象
- tcp::resolver resolver(io_service);
一个
resolver对象查询一个参数,并将其转换为TCP上节点的列表.这里我们把argv[1]中的sever的名字和要查询字串daytime关联.
- tcp::resolver::query query(argv[1], "daytime");
节点列表可以用
boost::asio::ip::tcp::resolver::iterator 来进行迭代.iterator默认的构造函数生成一个end iterator.
- tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
- tcp::resolver::iterator end;
现在我们建立一个连接的sockert,由于获得节点既有IPv4也有IPv6的.所以,我们需要依次尝试他们直到找到一个可以正常工作的.这步使得我们的程序独立于IP版本
- tcp::socket socket(io_service);
- boost::asio::error error = boost::asio::error::host_not_found;
- while (error && endpoint_iterator != end)
- {
- socket.close();
- socket.connect(*endpoint_iterator++, boost::asio::assign_error(error));
- }
- if (error)
- throw error;
连接完成,我们需要做的是读取daytime服务器的响应.
我们用
boost::array来保存得到的数据,
boost::asio::buffer()会自动根据
array的大小暂停工作,来防止缓冲溢出.除了使用
boost::array,也可以使用
char [] 或
std::vector.
- for (;;)
- {
- boost::array<char, 128> buf;
- boost::asio::error error;
- size_t len = socket.read_some(
- boost::asio::buffer(buf), boost::asio::assign_error(error));
当服务器关闭连接时,
boost::asio::ip::tcp::socket::read_some()会用
boost::asio::error::eof标志完成, 这时我们应该退出读取循环了.
- if (error == boost::asio::error::eof)
- break;
- else if (error)
- throw error;
- std::cout.write(buf.data(), len);
-
如果发生了什么异常我们同样会抛出它
- }
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
运行示例:在
windowsXP的
cmd窗口下
输入:
upload.exe time-a.nist.gov
输出:54031 06-10-23 01:50:45 07 0 0 454.2 UTC(NIST) *
完整的代码:
- #include
- #include
- #include
- using asio::ip::tcp;
- int main(int argc, char* argv[])
- {
- try
- {
- if (argc != 2)
- {
- std::cerr << "Usage: client " << std::endl;
- return 1;
- }
- asio::io_service io_service;
- tcp::resolver resolver(io_service);
- tcp::resolver::query query(argv[1], "daytime");
- tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
- tcp::resolver::iterator end;
- tcp::socket socket(io_service);
- asio::error error = asio::error::host_not_found;
- while (error && endpoint_iterator != end)
- {
- socket.close();
- socket.connect(*endpoint_iterator++, asio::assign_error(error));
- }
- if (error)
- throw error;
- for (;;)
- {
- boost::array<char, 128> buf;
- asio::error error;
- size_t len = socket.read_some(
- asio::buffer(buf), asio::assign_error(error));
- if (error == asio::error::eof)
- break;
- else if (error)
- throw error;
- std::cout.write(buf.data(), len);
- }
- }
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
- return 0;
- }
8. TCP同步时间服务器
- #include
- #include
- #include
- #include
- using asio::ip::tcp;
我们先定义一个函数返回当前的时间的
string形式.这个函数会在我们所有的时间服务器示例上被使用.
- std::string make_daytime_string()
- {
- using namespace std;
- time_t now = time(0);
- return ctime(&now);
- }
- int main()
- {
- try
- {
- asio::io_service io_service;
新建一个
asio::ip::tcp::acceptor对象来监听新的连接.我们监听TCP端口13,IP版本为V4
- tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));
这是一个iterative server,也就是说同一时间只能处理一个连接.建立一个
socket来表示一个和客户端的连接, 然后等待客户端的连接.
- for (;;)
- {
- tcp::socket socket(io_service);
- acceptor.accept(socket);
当客户端访问服务器时,我们获取当前时间,然后返回它.
- std::string message = make_daytime_string();
- asio::write(socket, asio::buffer(message),
- asio::transfer_all(), asio::ignore_error());
- }
- }
最后处理异常
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
- return 0;
-
运行示例:运行服务器,然后运行上一节的客户端,在
windowsXP的
cmd窗口下
输入:
client.exe 127.0.0.1
输出:
Mon Oct 23 09:44:48 2006
完整的代码:
- #include
- #include
- #include
- #include
- using asio::ip::tcp;
- std::string make_daytime_string()
- {
- using namespace std;
- time_t now = time(0);
- return ctime(&now);
- }
- int main()
- {
- try
- {
- asio::io_service io_service;
- tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));
- for (;;)
- {
- tcp::socket socket(io_service);
- acceptor.accept(socket);
- std::string message = make_daytime_string();
- asio::write(socket, asio::buffer(message),
- asio::transfer_all(), asio::ignore_error());
- }
- }
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
- return 0;
- }
2. 同步Timer
本章介绍asio如何在定时器上进行阻塞等待(
blocking wait
).
实现,我们包含必要的头文件.
所有的asio类可以简单的通过
include "asio.hpp"
来调用.
此外,这个示例用到了
timer
,我们还要包含
Boost.Date_Time
的头文件来控制时间.
使用asio至少需要一个
boost::asio::io_service
对象.该类提供了访问I/O的功能.我们首先在main函数中声明它.
- int main()
- {
- boost::asio::io_service io;
下一步我们声明
boost::asio::deadline_timer
对象.这个asio的核心类提供I/O的功能(这里更确切的说是定时功能),总是把一个
io_service
对象作为他的第一个构造函数,而第二个构造函数的参数设定timer会在5秒后到时(expired).
- boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
这个简单的示例中我们演示了定时器上的一个阻塞等待.就是说,调用
boost::asio::deadline_timer::wait()
的在创建后5秒内(注意:不是等待开始后),timer到时之前不会返回任何值.
一个
deadline_timer
只有两种状态:
到时
,
未到时
.
如果
boost::asio::deadline_timer::wait()
在到时的timer对象上调用,会立即return.
最后,我们输出理所当然的"Hello, world!"来演示timer到时了.
- std::cout << "Hello, world! ";
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- int main()
- {
- boost::asio::io_service io;
- boost::asio::deadline_timer t(io, boost::posix_time::seconds(5));
- t.wait();
- std::cout << "Hello, world! ";
- return 0;
- }
3. 异步Timer
- #include
- #include
- #include
asio的异步函数会在一个异步操作完成后被回调.这里我们定义了一个将被回调的函数.
- void print(const asio::error& )
- {
- std::cout << "Hello, world! ";
- }
- int main()
- {
- asio::io_service io;
- asio::deadline_timer t(io, boost::posix_time::seconds(5));
这里我们调用
asio::deadline_timer::async_wait()
来异步等待
最后,我们必须调用
asio::io_service::run()
.
asio库只会调用那个正在运行的
asio::io_service::run()
的回调函数.
如果
asio::io_service::run()
不被调用,那么回调永远不会发生.
asio::io_service::run()
会持续工作到点,这里就是timer到时,回调完成.
别忘了在调用
asio::io_service::run()
之前设置好io_service的任务.比如,这里,如果我们忘记先调用
asio::deadline_timer::async_wait()
则
asio::io_service::run()
会在瞬间return.
完整的代码:
- #include
- #include
- #include
- void print(const asio::error& )
- {
- std::cout << "Hello, world! ";
- }
- int main()
- {
- asio::io_service io;
- asio::deadline_timer t(io, boost::posix_time::seconds(5));
- t.async_wait(print);
- io.run();
- return 0;
- }
4. 回调函数的参数
这里我们将每秒回调一次,来演示如何回调函数参数的含义
- #include
- #include
- #include
- #include
首先,调整一下timer的持续时间,开始一个异步等待.显示,回调函数需要访问timer来实现周期运行,所以我们再介绍两个新参数
- void print(const asio::error& ,
- asio::deadline_timer* t, int* count)
- {
我们打算让这个函数运行6个周期,然而你会发现这里没有显式的方法来终止io_service.不过,回顾上一节,你会发现当 asio::io_service::run()会在所有任务完成时终止.这样我们当计算器的值达到5时(0为第一次运行的值),不再开启一个新的异步等待就可以了.
- if (*count < 5)
- {
- std::cout << *count << " ";
- ++(*count);
- ...
然后,我们推迟的timer的终止时间.通过在原先的终止时间上增加延时,我们可以确保timer不会在处理回调函数所需时间内的到期.
(原文:
By calculating the new expiry time relative to the old, we can ensure that the timer does not drift away from the whole-second mark due to any delays in processing the handler.)
- t->expires_at(t->expires_at() + boost::posix_time::seconds(1));
然后我们开始一个新的同步等待.如您所见,我们用把
print和他的多个参数用
boost::bind函数合成一个的形为
void(const asio::error&)回调函数(准确的说是
function object).
在这个例子中,
boost::bind的
asio::placeholders::error参数是为了给回调函数传入一个
error对象.当进行一个异步操作,开始
boost::bind时,你需要使用它来匹配回调函数的参数表.下一节中你会学到回调函数不需要
error参数时可以省略它.
- t->async_wait(boost::bind(print,
- asio::placeholders::error, t, count));
- }
- }
- int main()
- {
- asio::io_service io;
- int count = 0;
- asio::deadline_timer t(io, boost::posix_time::seconds(1));
和上面一样,我们再一次使用了绑定
asio::deadline_timer::async_wait()
- t.async_wait(boost::bind(print,
- asio::placeholders::error, &t, &count));
- io.run();
在结尾,我们打印出的最后一次没有设置timer的调用的count的值
- std::cout << "Final count is " << count << " ";
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- #include
- void print(const asio::error& ,
- bsp; asio::deadline_timer* t, int* count)
- {
- if (*count < 5)
- {
- std::cout << *count << " ";
- ++(*count);
- t->expires_at(t->expires_at() + boost::posix_time::seconds(1));
- t->async_wait(boost::bind(print,
- asio::placeholders::error, t, count));
- }
- }
- int main()
- {
- asio::io_service io;
- int count = 0;
- asio::deadline_timer t(io, boost::posix_time::seconds(1));
- t.async_wait(boost::bind(print,
- asio::placeholders::error, &t, &count));
- io.run();
- std::cout << "Final count is " << count << " ";
- return 0;
- }
5. 成员函数作为回调函数
本例的运行结果和上一节类似
- #include
- #include
- #include
- #include
我们先定义一个printer类
- class printer
- {
- public:
-
- printer(boost::asio::io_service& io)
- : timer_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
boost::bind 同样可以出色的工作在成员函数上.众所周知,所有的非静态成员函数都有一个隐式的
this参数,我们需要把
this作为参数
bind到成员函数上.和上一节类似,我们再次用
bind构造出
void(const boost::asio::error&)形式的函数.
注意,这里没有指定
boost::asio::placeholders::error占位符,因为这个
print成员函数没有接受一个
error对象作为参数.
- timer_.async_wait(boost::bind(&printer::print, this));
-
在类的折构函数中我们输出最后一次回调的
count的值
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
print函数于上一节的十分类似,但是用成员变量取代了参数.
- void print()
- {
- if (count_ < 5)
- {
- std::cout << count_ << " ";
- ++count_;
- timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
- timer_.async_wait(boost::bind(&printer::print, this));
- }
- }
- private:
- boost::asio::deadline_timer timer_;
- int count_;
- };
-
现在main函数清爽多了,在运行io_service之前只需要简单的定义一个printer对象.
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- io.run();
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- #include
- class printer
- {
- public:
- printer(boost::asio::io_service& io)
- : timer_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
- timer_.async_wait(boost::bind(&printer::print, this));
- }
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
- void print()
- {
- if (count_ < 5)
- {
- std::cout << count_ << " ";
- ++count_;
- timer_.expires_at(timer_.expires_at() + boost::posix_time::seconds(1));
- timer_.async_wait(boost::bind(&printer::print, this));
- }
- }
- private:
- boost::asio::deadline_timer timer_;
- int count_;
- };
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- io.run();
- return 0;
- }
6. 多线程回调同步
本节演示了使用
boost::asio::strand在多线程程序中进行回调同步(synchronise).
先前的几节阐明了如何在单线程程序中用
boost::asio::io_service::run()进行同步.如您所见,asio库确保 仅当当前线程调用
boost::asio::io_service::run()时产生回调.显然,仅在一个线程中调用
boost::asio::io_service::run() 来确保回调是适用于并发编程的.
一个基于asio的程序最好是从单线程入手,但是单线程有如下的限制,这一点在服务器上尤其明显:
- 当回调耗时较长时,反应迟钝.
- 在多核的系统上无能为力
如果你发觉你陷入了这种困扰,可以替代的方法是建立一个
boost::asio::io_service::run()的线程池.然而这样就允许回调函数并发执行.所以,当回调函数需要访问一个共享,线程不安全的资源时,我们需要一种方式来同步操作.
- #include
- #include
- #include
- #include
- #include
在上一节的基础上我们定义一个printer类,此次,它将并行运行两个timer
除了声明了一对
boost::asio::deadline_timer,构造函数也初始化了类型为
boost::asio::strand的
strand_成员.
boost::asio::strand 可以分配的回调函数.它保证无论有多少线程调用了
boost::asio::io_service::run(),下一个回调函数仅在前一个回调函数完成后开始,当然回调函数仍然可以和那些不使用
boost::asio::strand分配,或是使用另一个
boost::asio::strand分配的回调函数一起并发执行.
- printer(boost::asio::io_service& io)
- : strand_(io),
- timer1_(io, boost::posix_time::seconds(1)),
- timer2_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
当一个异步操作开始时,用
boost::asio::strand来 "wrapped(包装)"回调函数.
boost::asio::strand::wrap()会返回一个由
boost::asio::strand分配的新的handler(句柄),这样,我们可以确保它们不会同时运行.
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
多线程程序中,回调函数在访问共享资源前需要同步.这里共享资源是
std::cout 和
count_变量.
- void print1()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 1: " << count_ << " ";
- ++count_;
- timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- }
- }
- void print2()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 2: " << count_ << " ";
- ++count_;
- timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- }
- private:
- boost::asio::strand strand_;
- boost::asio::deadline_timer timer1_;
- boost::asio::deadline_timer timer2_;
- int count_;
- };
main函数中
boost::asio::io_service::run()在两个线程中被调用:主线程、一个
boost::thread线程.
正如单线程中那样,并发的
boost::asio::io_service::run()会一直运行直到完成任务.后台的线程将在所有异步线程完成后终结.
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
- io.run();
- t.join();
- return 0;
- }
完整的代码:
- #include
- #include
- #include
- #include
- #include
- class printer
- {
- public:
- printer(boost::asio::io_service& io)
- : strand_(io),
- timer1_(io, boost::posix_time::seconds(1)),
- timer2_(io, boost::posix_time::seconds(1)),
- count_(0)
- {
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- ~printer()
- {
- std::cout << "Final count is " << count_ << " ";
- }
- void print1()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 1: " << count_ << " ";
- ++count_;
- timer1_.expires_at(timer1_.expires_at() + boost::posix_time::seconds(1));
- timer1_.async_wait(strand_.wrap(boost::bind(&printer::print1, this)));
- }
- }
- void print2()
- {
- if (count_ < 10)
- {
- std::cout << "Timer 2: " << count_ << " ";
- ++count_;
- timer2_.expires_at(timer2_.expires_at() + boost::posix_time::seconds(1));
- timer2_.async_wait(strand_.wrap(boost::bind(&printer::print2, this)));
- }
- }
- private:
- boost::asio::strand strand_;
- boost::asio::deadline_timer timer1_;
- boost::asio::deadline_timer timer2_;
- int count_;
- };
- int main()
- {
- boost::asio::io_service io;
- printer p(io);
- boost::thread t(boost::bind(&boost::asio::io_service::run, &io));
- io.run();
- t.join();
- return 0;
- }
7. TCP客户端:对准时间
- #include
- #include
- #include
本程序的目的是访问一个时间同步服务器,我们需要用户指定一个服务器(如time-nw.nist.gov),用IP亦可.
(
译者注:日期查询协议,这种时间传输协议不指定固定的传输格式,只要求按照ASCII标准发送数据。)
- using boost::asio::ip::tcp;
- int main(int argc, char* argv[])
- {
- try
- {
- if (argc != 2)
- {
- std::cerr << "Usage: client " << std::endl;
- return 1;
- }
用asio进行网络连接至少需要一个
boost::asio::io_service对象
- boost::asio::io_service io_service;
我们需要把在命令行参数中指定的服务器转换为TCP上的节点.完成这项工作需要
boost::asio::ip::tcp::resolver对象
- tcp::resolver resolver(io_service);
一个
resolver对象查询一个参数,并将其转换为TCP上节点的列表.这里我们把argv[1]中的sever的名字和要查询字串daytime关联.
- tcp::resolver::query query(argv[1], "daytime");
节点列表可以用
boost::asio::ip::tcp::resolver::iterator 来进行迭代.iterator默认的构造函数生成一个end iterator.
- tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
- tcp::resolver::iterator end;
现在我们建立一个连接的sockert,由于获得节点既有IPv4也有IPv6的.所以,我们需要依次尝试他们直到找到一个可以正常工作的.这步使得我们的程序独立于IP版本
- tcp::socket socket(io_service);
- boost::asio::error error = boost::asio::error::host_not_found;
- while (error && endpoint_iterator != end)
- {
- socket.close();
- socket.connect(*endpoint_iterator++, boost::asio::assign_error(error));
- }
- if (error)
- throw error;
连接完成,我们需要做的是读取daytime服务器的响应.
我们用
boost::array来保存得到的数据,
boost::asio::buffer()会自动根据
array的大小暂停工作,来防止缓冲溢出.除了使用
boost::array,也可以使用
char [] 或
std::vector.
- for (;;)
- {
- boost::array<char, 128> buf;
- boost::asio::error error;
- size_t len = socket.read_some(
- boost::asio::buffer(buf), boost::asio::assign_error(error));
当服务器关闭连接时,
boost::asio::ip::tcp::socket::read_some()会用
boost::asio::error::eof标志完成, 这时我们应该退出读取循环了.
- if (error == boost::asio::error::eof)
- break;
- else if (error)
- throw error;
- std::cout.write(buf.data(), len);
-
如果发生了什么异常我们同样会抛出它
- }
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
运行示例:在
windowsXP的
cmd窗口下
输入:
upload.exe time-a.nist.gov
输出:54031 06-10-23 01:50:45 07 0 0 454.2 UTC(NIST) *
完整的代码:
- #include
- #include
- #include
- using asio::ip::tcp;
- int main(int argc, char* argv[])
- {
- try
- {
- if (argc != 2)
- {
- std::cerr << "Usage: client " << std::endl;
- return 1;
- }
- asio::io_service io_service;
- tcp::resolver resolver(io_service);
- tcp::resolver::query query(argv[1], "daytime");
- tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
- tcp::resolver::iterator end;
- tcp::socket socket(io_service);
- asio::error error = asio::error::host_not_found;
- while (error && endpoint_iterator != end)
- {
- socket.close();
- socket.connect(*endpoint_iterator++, asio::assign_error(error));
- }
- if (error)
- throw error;
- for (;;)
- {
- boost::array<char, 128> buf;
- asio::error error;
- size_t len = socket.read_some(
- asio::buffer(buf), asio::assign_error(error));
- if (error == asio::error::eof)
- break;
- else if (error)
- throw error;
- std::cout.write(buf.data(), len);
- }
- }
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
- return 0;
- }
8. TCP同步时间服务器
- #include
- #include
- #include
- #include
- using asio::ip::tcp;
我们先定义一个函数返回当前的时间的
string形式.这个函数会在我们所有的时间服务器示例上被使用.
- std::string make_daytime_string()
- {
- using namespace std;
- time_t now = time(0);
- return ctime(&now);
- }
- int main()
- {
- try
- {
- asio::io_service io_service;
新建一个
asio::ip::tcp::acceptor对象来监听新的连接.我们监听TCP端口13,IP版本为V4
- tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));
这是一个iterative server,也就是说同一时间只能处理一个连接.建立一个
socket来表示一个和客户端的连接, 然后等待客户端的连接.
- for (;;)
- {
- tcp::socket socket(io_service);
- acceptor.accept(socket);
当客户端访问服务器时,我们获取当前时间,然后返回它.
- std::string message = make_daytime_string();
- asio::write(socket, asio::buffer(message),
- asio::transfer_all(), asio::ignore_error());
- }
- }
最后处理异常
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
- return 0;
-
运行示例:运行服务器,然后运行上一节的客户端,在
windowsXP的
cmd窗口下
输入:
client.exe 127.0.0.1
输出:
Mon Oct 23 09:44:48 2006
完整的代码:
- #include
- #include
- #include
- #include
- using asio::ip::tcp;
- std::string make_daytime_string()
- {
- using namespace std;
- time_t now = time(0);
- return ctime(&now);
- }
- int main()
- {
- try
- {
- asio::io_service io_service;
- tcp::acceptor acceptor(io_service, tcp::endpoint(tcp::v4(), 13));
- for (;;)
- {
- tcp::socket socket(io_service);
- acceptor.accept(socket);
- std::string message = make_daytime_string();
- asio::write(socket, asio::buffer(message),
- asio::transfer_all(), asio::ignore_error());
- }
- }
- catch (std::exception& e)
- {
- std::cerr << e.what() << std::endl;
- }
- return 0;
- }