动态规划起步(状态压缩) hihoCoder

题目解释的很清楚了,不多说
 
 

#1044 : 状态压缩·一

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Hi和小Ho在兑换到了喜欢的奖品之后,便继续起了他们的美国之行,思来想去,他们决定乘坐火车前往下一座城市——那座城市即将举行美食节!

但是不幸的是,小Hi和小Ho并没有能够买到很好的火车票——他们只能够乘坐最为破旧的火车进行他们的旅程。

不仅如此,因为美食节的吸引,许多人纷纷踏上了和小Hi小Ho一样的旅程,于是有相当多的人遭遇到了和小Hi小Ho一样的情况——这导致这辆车上的人非常非常的多,以至于都没有足够的位置能让每一个人都有地方坐下来。

小Hi和小Ho本着礼让他们的心情——当然还因为本来他们买的就是站票,老老实实的呆在两节车厢的结合处。他们本以为就能够这样安稳抵达目的地,但事与愿违,他们这节车厢的乘务员是一个强迫症,每隔一小会总是要清扫一次卫生,而时值深夜,大家都早已入睡,这种行为总是会惊醒一些人。而一旦相邻的一些乘客被惊醒了大多数的话,就会同乘务员吵起来,弄得大家都睡不好。

将这一切看在眼里的小Hi与小Ho决定利用他们的算法知识,来帮助这个有着强迫症的乘务员——在不与乘客吵起来的前提下尽可能多的清扫垃圾。

小Hi和小Ho所处的车厢可以被抽象成连成一列的N个位置,按顺序分别编号为1..N,每个位置上都有且仅有一名乘客在休息。同时每个位置上都有一些垃圾需要被清理,其中第i个位置的垃圾数量为Wi。乘务员可以选择其中一些位置进行清理,但是值得注意的是,一旦有编号连续的M个位置中有超过Q个的位置都在这一次清理中被选中的话(即这M个位置上的乘客有至少Q+1个被惊醒了),就会发生令人不愉快的口角。而小Hi和小Ho的任务是,计算选择哪些位置进行清理,在不发生口角的情况下,清扫尽可能多的垃圾。

提示一:无论是什么动态规划,都需要一个状态转移方程!

提示二:好像什么不对劲?状态压缩哪里去了?

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为三个正整数N、M和Q,意义如前文所述。

每组测试数据的第二行为N个整数,分别为W1到WN,代表每一个位置上的垃圾数目。

对于100%的数据,满足N<=1000, 2<=M<=10,1<=Q<=M, Wi<=100

输出

对于每组测试数据,输出一个整数Ans,表示在不发生口角的情况下,乘务员最多可以清扫的垃圾数目。

样例输入
5 2 1
36 9 80 69 85 
样例输出
201


#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define REP(i,N) for (int i = 0;i < (N);i++)
#define REP_1(i,N) for (int i = 1;i < (N);i++)
#define REP_2(i,be,en) for (int i = (be);i < (en);i++)
#define DWN(i,N) for (int i = (N);i >= 0;i--)
#define DWN_1(i,N) for (int i = (N);i >= 1;i--)
#define DWN_2(i,en,be) for (int i = (en);i >= (be);i--)
#define FR(N) freopen((N),"r",stdin)
#define FW(N) freopen((N),"w",stdout)
#define GETS(ch) fgets((ch),MAXN,stdin);
#define INF 0x3f3f3f3f
#define MAXN 100010
using namespace std;

typedef long long LL;
typedef map MINT;
typedef vector VINT;
typedef set SINT;

int get_bit_sum(int s) {
    int ans = 0;
    while (s) {
        ans += (s & 1);
        s >>= 1;
    }
    return ans;
}
int best[2][1030];

int main () {
    int N,M,Q;
    FR("1.txt");
    cin >> N >> M >> Q;{
        memset(best,0,sizeof(best));
        int ans = 0;
        int p = 1;
        REP(i,N) {
            int W;
            cin >> W;
            REP(s,(1 << M)) {
                int ss = get_bit_sum(s);
                if (ss > Q) continue;
                if (ss < Q) best[p][s] = max(best[p ^ 1][s >> 1],best[p ^ 1][(s >> 1) + (1 << (M - 2))]);
                else best[p][s] = best[p ^ 1][s >> 1];
                if (s & 1) best[p][s] += W;
                p ^= 1;
            }
        }
        REP(i,(1 << M)) {
            ans = max(ans,best[p ^ 1][i]);
        }
        cout << ans << endl;
    }

}

  

 

转载于:https://www.cnblogs.com/xiaoshanshan/p/4303606.html

你可能感兴趣的:(数据结构与算法)