已知三点,求该平面,判断第4点是否在该平面上

// fitplane.cpp : 定义控制台应用程序的入口点。
//


#include "stdafx.h"
#include
#include




typedef struct Point
{
double x;
double y;
double z;
};
bool judgeAngel(Point p1,Point p2)
{
double Angel;
//判断角度
Angel = (p1.x*p2.x + p1.y*p2.y + p1.z*p2.z) / (abs(sqrt(pow(p1.x,2)+ pow(p1.y, 2)+ pow(p1.z, 2)))*abs(sqrt(pow(p2.x, 2) + pow(p2.y, 2) + pow(p2.z, 2))));
if (Angel < 0)
return false;
else 
return true;
}


int main()
{
Point P1, P2, P3,P4;
Point vector1, vector2;
bool flag = true;
double A = 0, B = 0, C = 0, D = 0;
P1 = { -22.9059,17.4158,19.4974 };
P2 = { -23.5058,- 39.3583,20.1825 };
P3 = { -44.5486,- 51.6247,25.0109 };
P4 = { -34.5891,-28.8095,22.5984 };
double test=0;
vector1 = { P2.x - P1.x,P2.y - P1.y,P2.z - P1.z };
vector2 = { P3.x - P1.x,P3.y - P1.y,P3.z - P1.z };
flag = judgeAngel(vector1,vector2);
if (flag==false)
{
vector2 = { P1.x - P2.x,P1.y - P2.y,P1.z - P2.z };
}
else
{
A = vector1.y*vector2.z - vector2.y*vector1.z;
B = vector2.x*vector1.z - vector1.x*vector2.z;
C = vector1.x*vector2.y - vector2.x*vector1.y;
}
D = P1.x*A + P1.y*B + P1.z*C;
test = P4.x*A + P4.y*B + P4.z*C;
std::cout << A << std::endl;
std::cout << B << std::endl;
std::cout << C << std::endl;
std::cout << D << std::endl;
std::cout << test << std::endl;
    return 0;
}

你可能感兴趣的:(已知三点,求该平面,判断第4点是否在该平面上)