class xgboost.
XGBClassifier
(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True, objective='binary:logistic', booster='gbtree', n_jobs=1, nthread=None, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, seed=None, missing=None, **kwargs)
- booster
- gbtree 树模型做为基分类器(默认)
- gbliner 线性模型做为基分类器
- n_jobs 并行线程数
- silent
- silent=0时,不输出中间过程(默认)
- silent=1时,输出中间过程
- nthread
- nthread=-1时,使用全部CPU进行并行运算(默认)
- nthread=1时,使用1个CPU进行运算。
- scale_pos_weight
- 正样本的权重,在二分类任务中,当正负样本比例失衡时,设置正样本的权重,模型效果更好。例如,当正负样本比例为1:10时,scale_pos_weight=10。
- n_estimatores
- max_depth
- 含义:树的深度,默认值为6,典型值3-10。
- 调参:值越大,越容易过拟合;值越小,越容易欠拟合。
- min_child_weight
- 含义:默认值为1,。
- 调参:值越大,越容易欠拟合;值越小,越容易过拟合(值较大时,避免模型学习到局部的特殊样本)。
- subsample
- 含义:训练每棵树时,使用的数据占全部训练集的比例。默认值为1,典型值为0.5-1。
- 调参:防止overfitting。
- colsample_bytree
- 含义:训练每棵树时,使用的特征占全部特征的比例。默认值为1,典型值为0.5-1。
- 调参:防止overfitting。
- learning_rate
- 含义:学习率,控制每次迭代更新权重时的步长,默认0.3。
- 调参:值越小,训练越慢。
- 典型值为0.01-0.2。
- gamma
- 惩罚项系数,指定节点分裂所需的最小损失函数下降值。
- 调参:
- alpha
- lambda