并查集

并查集

本文参考于傻子都能看懂的并查集入门
易懂的并查集解释:易懂的并查集解释

并查集概述

并查集顾名思义就是有“合并集合”和“查找集合中的元素”两种操作的数据结构。并查集不支持分割一个集合。
用集合中的某个元素来代表这个集合,该元素称为集合的代表元。
一个集合内的所有元素组织成以代表元为根的树形结构。
对于每一个元素, parent[x]指向x在树形结构上的父亲节点。如果x是根节点,则令parent[x] = x。
对于查找操作,假设需要确定x所在的的集合,也就是确定集合的代表元。可以沿着parent[x]不断在树形结构中向上移动,直到到达根节点。
判断两个元素是否属于同一集合,只需要看他们的代表元是否相同即可。

并查集用途

1、维护无向图的连通性。支持判断两个点是否在同一连通块内。
2、判断增加一条边是否会产生环。

并查集的操作

初始化

包括对所有单个的数据建立一个单独的集合(即根据题目的意思自己建立的最多可能有的集合,为下面的合并查找操作提供操作对象)
在每一个单个的集合里面,有:
1,集合所代表的数据。(这个初始值根据需要自己定义,不固定)
2,这个集合的层次通常用rank表示(一般来说,初始化的工作之一就是将每一个集合里的rank置为0)。
3,这个集合的类别parent(有的人也喜欢用set表示)(其实就是一个指针,用来指示这个集合属于那一类,合并过后的集合,他们的parent指向的最终值一定是相同的。)
(有的简单题里面集合的数据就是这个集合的标号)
初始化的时候,一个集合的parent都是这个集合自己的标号。没有跟它同类的集合,那么这个集合的源头只能是自己了。
(最简单的集合就只含有这三个东西了,当然,复杂的集合就是把3指针这一项添加内容,随着指针的增加,并查集操作起来也变得复杂,题目也就显得更难了)

结构体表示法
#define MAX 10000
struct Node
{
    int data;
    int rank;
    int parent;
 }node[MAX];
数组表示法
int set[max];//集合index的类别,或者用parent表示
int rank[max];//集合index的层次,通常初始化为0
int data[max];//集合index的数据类型

//初始化集合
void Make_Set(int i)
{
    set[i]=i;//初始化的时候,一个集合的parent都是这个集合自己的标号。没有跟它同类的集合,那么这个集合的源头只能是自己了。
    rank[i]=0;
}

查找函数

就是找到parent指针的源头
如果集合的parent等于集合的编号(即还没有被合并或者没有同类),那么自然返回自身编号。
如果不同(即经过合并操作后指针指向了源头(合并后选出的rank高的集合))那么就可以调用递归函数,如下面的代码:

/**
*查找集合i(一个元素是一个集合)的源头(递归实现)。
 如果集合i的父亲是自己,说明自己就是源头,返回自己的标号;
 否则查找集合i的父亲的源头。
**/
int get_parent(int x)
{
    if(node[x].parent==x)
        return x;
    return get_parent(node[x].parent);
}

数组表示法:

//查找集合i(一个元素是一个集合)的源头(递归实现)
int Find_Set(int i)
{ 
    //如果集合i的父亲是自己,说明自己就是源头,返回自己的标号
   if(set[i]==i)
       return set[i];
    //否则查找集合i的父亲的源头
    return  Find_Set(set[i]);        
}
优化方法:路径压缩

为了加快查找速度,查找时将x到根节点路径上的所有点的parent设为根节点,该优化方法称为压缩路径。
使用该优化后,平均复杂度可视为Ackerman函数的反函数,实际应用中可粗略认为其是一个常数。

int unifind(int a){// find the root and compress the path
    
    int root = a;
    
    //find the root
    while(root != parent[root] ){ // The parent of root is root itself.
        root = parent[root];
    }
    
    // compress the path
    while( a != root){
        int parentOfA = parent[a];
        parent[a] = root; // 将当前节点的父节点直接设置为父节点
        a = parentOfA;
    }
    
    return root;
}

合并集合

并查集_第1张图片

void Union(int a,int b)
{
    a=get_parent(a);
    b=get_parent(b);
    if(node[a].rank>node[b].rank)
        node[b].parent=a;
    else
    {    
        node[a].parent=b;
        if(node[a].rank==node[b].rank)
            node[b].rank++;
    }
}

数组表示:

void Union(int i,int j)
{
    i=Find_Set(i);
    j=Find_Set(j);
    if(i==j) return ;
    if(rank[i]>rank[j]) set[j]=i;
    else
    {
        if(rank[i]==rank[j]) rank[j]++;   
        set[i]=j;
    }
}

你可能感兴趣的:(图)