基于USB2.0的高分辨率数字摄像头设计

摘要:介绍了一种基于USB2.0协议的高分辨率数字摄像头,并给出了利用CMOS图像传感器OB9620和USB控制器CY7C68013设计高分辨率数字摄像头的基本硬件电路以及软件设计方法。

    关键词:

USB2.0;I2C;摄像头;OV9620

1 概述

目前,能够传输高品质视频信号的两种总线接口(USB和IEEE 1394接口)都支持即插即用,且具有易扩展、使用方便等特点。但是IEEE 1394接口的价格相对较高,因此,当前采用更多的是USB接口。

USB 的数据传输有4种模式:块传输(Bulk Transfers)、中断传输(Interrupt Transfers)、同步传输(Isochronous Transfers)、控制传输(Control Transfers)。当需要快速传输大批量的准确数据时,一般采用块传输模式;而当传输实时性较强的数据时,则应采用中断传输模式。现在的USB2.0 规范在原有的低速模式(low speed) 1.5Mb/s、全速模式(full speed) 12Mb/s的基础上又支持高达480Mb/s的高速模式(high speed),从而使USB总线真正成为能满足高速应用场合的标准连接总线。在USB2.0中,每毫秒可发送8~10微帧,这比USB1.1的传输速率有 了极大的提高,同时对缓存的要求也大大降低了。USB2.0向下完全兼容,协议规定,在全速模式和低速模式下,主机控制器和hub之间也可以进行高速传 输,但是hub和外设之间仍然保持原有传输模式,这样可以使设备在分享带宽时冲突最小。

2 硬件电路

本系统选用OmniVision Technologies Inc.公司的OV9620作为视频信号的采集芯片,用EZ-USB FX2作为USB控制芯片并为OV9620提供工作时钟,E2PROM使用24LC65,通过I2C总线连接所有芯片。硬件连接框图见图1所示。

2.1 OV9620的主要特性

OV9620 是美国OmniVision公司为数字照相机和摄像机产品开发的高性能130万像素彩色CMOS数字图像传感器芯片。与传统的CCD传感器相比,CMOS 最明显的优势是集成度高、功耗小、生产成本低,容易与其他芯片整合。该款芯片的图像总区域为6.82×5.39mm2,成像区域为6.66×5. 32mm2,非常有利于产品的小型化。

该芯片支持SXGA(1280×1024分 辨率)和VGA(640×480分辨率)两种模式和SCCB(Serial Camera Control Bus)接口,使用24MHz晶振,内置10位A/D转换器,能提供10位数字视频信号。另外该芯片还可输出像素时钟以及行、场同步信号,并可以直接与专 用集成电路系统连接,其后端系统可以通过SCCB接口来控制。可利用USB2.0控制器,在P4 1.5G以上系统中提供15fps的SXGA或30fps的VGA动态影像。该芯片采用Bayer滤光阵列把输入光信号分解成RGB三原色,像素阵列有 1312×1036=1359232个,成像像素有1280×1024=1310720个。不成像像素可作为光学黑体像素用作黑值校准以补偿由光线引起的 温度变化和暴光变化。

芯片中使用的SCCB接口是OmniVision公司制定的一种用于控制图像传感器的三线连续总线(SCS、SIO1、SIO0),其中SCS用于实现片选(低电平有效),当芯片被选中后,SIO1、SIO0在功能及使用上和I2C总线兼容。

另外,OV9620还提供了一个控制信号输入端(PWDN),可用于实现掉电模式的开关。在本设计中,因为OV9620与其他芯片同时工作,因此,没有采用片选而是由PWDN 来实现控制。

2.2 EZ-USB FX2的主要特点

EZ -USB FX2(即CY7C68013)是Cypress公司为高速传输外设设计的USB2.0控制芯片。该芯片内含1个增强型8051处理器、1个串行接口引擎 (SIE)、1个USB收发器、8.5kB片上RAM、4kB FIFO存储器以及1个通用可编程接口(GPIF)。

FX2采用量子FIFO处理构架,其USB接口和应用环境可以直接共享FIFO,而微控制器则可不参与数据传输但允许以FIFO或RAM方式访问这些共享FIFO,这样,就较好地解决了USB高速模式的带宽问题。

FX2 有一个I2C兼容端口,当FX2作为主控制器,SCL时钟频率为100/400kbps时,该端口兼容I2C总线。一般情况下,该端口由两个内部控制器驱 动:一个在程序加载时自动读取VID/PID/DID和配置信息;另一个是芯片中的8051,一旦开始运行,8051利用芯片中的I2CTL和I2DAT 寄存器控制挂接在I2C总线上的外围设备。具体来说,系统上电时,FX2会通过内部逻辑监测I2C端口,如果发现有地址为0xC0 或者是0xC2的E2PROM,便在E2PROM内部存储空间0xC0使用VID/PID/DID值或者把E2PROM的内容加载到内部RAM中。


2.3 电路原理及设计

设 计中可使用I2C总线实现USB控制器与图像传感器的连接,并选用E2PROM(24LC65)作为代码存储器,然后通过FX2的C2方式加载固件程序。 系统上电复位后,处于主模式的USB控制器将通过PA1输出启动信号,并经反向后传到图像传感器的PWDN,以使处于从模式的图象传感器开始工作。 PCLK提供像素时钟,HREF提供水平同步信号,VSYNC提供垂直同步信号。这两个同步信号与图像数据的时序关系如图2所示。

VSYNC会在一帧图像传输到控制器后触发INT0中断。因为数据量太大,本设计没有在INT0中断服务子程序中进行全部的数据处理,而是设置了一个标志位,并通过标志位的状态来在主程序中进行处理,这样就避免由于数据处理时间太长而使控制器无法响应其它中断。

USB控制器的FIFO处于从模式。控制器的端点设置为EP2—512 四重缓存;EP6-512四重缓存,块传输模式。这样的设置可以满足系统要求。

3 接口程序设计

EZ -USB FX2提供了丰富的中断资源,除内置8051中断资源外,FX2还为INT2和INT4提供了一个中断向量表,表中有27个 INT2(USB)中断向量和14个INT4中断向量。因此,在设计中,大部分工作都可通过中断服务子程序来完成。图3、图4分别是主程序流程和I2C INT中断服务子程序的流程图。

同EZ-USB系列的其它控制器一样,Cypress公司也为FX2提供了比较完备的开发套件CY3681。这个套件包括带128脚CY7C68013的硬件开发板和相应的控制面板以及GPIF代码自动生成软件。因此可以非常方便地实现固件的开发。

USB 设备驱动程序的设计是基于WDM(驱动程序模型)并采用分层模型来进行。应用程序通过调用Windows API函数来进行的对WIN32子系统进行WIN32调用,并通过I/O管理器产生IRP(I/O请求包),然后传递给USB驱动程序,接着再由驱动程序 执行相应的操作,并将结果返还给I/O管理器。用DriverEntry可设置整个系统的回调例程,当添加一个新设备和IRP需要发送到驱动程序时,通过 内核可调用这些例程。下面是DriverEntry例程的简要内容:

DriverObject->DriverExtension->AddDevice=VcameraAddDevice;

DriverObject->DriverUnload=VcameraUnload;

DriverObject->MajorFunction[IRP_MJ_CREATE]= VcameraCreat;

DriverObject->MajorFunction[IRP_MJ_CLOSE]= VcameraClose

DriverObject->MajorFunction[IRP_MJ_READ]=VcameraRead

DriverObject->MajorFunction[IRP_MJ_WRITE]=VcameraWrite

……

实际上,USB客户驱动程序中包含大量的例程,也对Windows DDK工具下开发USB客户驱动程序的方法和过程作了详细的介绍。

4 小结

目前,笔者已经开发出样品,并且在一些应用程序上进行过测试,获得了很好的效果,其分辨率高达1280×1024。

 

你可能感兴趣的:(基于USB2.0的高分辨率数字摄像头设计)